Cargando…
Automatic Detection of Brain Metastases in T1-Weighted Construct-Enhanced MRI Using Deep Learning Model
SIMPLE SUMMARY: In this research, we introduced an improved deep learning model for automatic brain metastases detection in MRI. In order to reduce false-positive results while retaining high accuracy, a modified YOLOv5 algorithm with self-attention mechanism is proposed. Our proposed deep learning...
Autores principales: | Zhou, Zichun, Qiu, Qingtao, Liu, Huiling, Ge, Xuanchu, Li, Tengxiang, Xing, Ligang, Yang, Runtao, Yin, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526374/ https://www.ncbi.nlm.nih.gov/pubmed/37760413 http://dx.doi.org/10.3390/cancers15184443 |
Ejemplares similares
-
A multi-task deep learning model for EGFR genotyping prediction and GTV segmentation of brain metastasis
por: Zhou, Zichun, et al.
Publicado: (2023) -
Comparative analysis of dose calculation algorithms for CyberKnife-based stereotactic radiotherapy in lung cancer
por: Ge, Xuanchu, et al.
Publicado: (2023) -
Editorial: Prognosis prediction and risk stratification in head and neck cancer
por: Li, Tengxiang, et al.
Publicado: (2022) -
Automatic Segmentation of MRI of Brain Tumor Using Deep Convolutional Network
por: Zhou, Runwei, et al.
Publicado: (2022) -
Diffusion weighted MRI is a promising imaging biomarker in brain metastases
por: Zakaria, R., et al.
Publicado: (2014)