Cargando…
MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer
SIMPLE SUMMARY: Given the variable aggressiveness of PCa, patients with indolent PCa do not require intervention, but rather require active surveillance and close lifelong follow-up, while those with invasive PCa require surgery, various types of radiation therapy, androgen-deprivation therapy (ADT)...
Autores principales: | Qiao, Xiaofeng, Gu, Xiling, Liu, Yunfan, Shu, Xin, Ai, Guangyong, Qian, Shuang, Liu, Li, He, Xiaojing, Zhang, Jingjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526397/ https://www.ncbi.nlm.nih.gov/pubmed/37760505 http://dx.doi.org/10.3390/cancers15184536 |
Ejemplares similares
-
Multiparametric MRI radiomics in prostate cancer for predicting Ki-67 expression and Gleason score: a multicenter retrospective study
por: Zhou, Chuan, et al.
Publicado: (2023) -
Correlation between DCE-MRI radiomics features and Ki-67 expression in invasive breast cancer
por: Juan, Ma-Wen, et al.
Publicado: (2018) -
Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings
por: Penzias, Gregory, et al.
Publicado: (2018) -
Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma
por: Fan, Yanfen, et al.
Publicado: (2021) -
Deep learning–based radiomic nomograms for predicting Ki67 expression in prostate cancer
por: Deng, Shuitang, et al.
Publicado: (2023)