Cargando…

An Enhanced Hunger Games Search Optimization with Application to Constrained Engineering Optimization Problems

The Hunger Games Search (HGS) is an innovative optimizer that operates without relying on gradients and utilizes a population-based approach. It draws inspiration from the collaborative foraging activities observed in social animals in their natural habitats. However, despite its notable strengths,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yaoyao, Heidari, Ali Asghar, Wang, Shuihua, Chen, Huiling, Zhang, Yudong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526405/
https://www.ncbi.nlm.nih.gov/pubmed/37754192
http://dx.doi.org/10.3390/biomimetics8050441
Descripción
Sumario:The Hunger Games Search (HGS) is an innovative optimizer that operates without relying on gradients and utilizes a population-based approach. It draws inspiration from the collaborative foraging activities observed in social animals in their natural habitats. However, despite its notable strengths, HGS is subject to limitations, including inadequate diversity, premature convergence, and susceptibility to local optima. To overcome these challenges, this study introduces two adjusted strategies to enhance the original HGS algorithm. The first adaptive strategy combines the Logarithmic Spiral (LS) technique with Opposition-based Learning (OBL), resulting in the LS-OBL approach. This strategy plays a pivotal role in reducing the search space and maintaining population diversity within HGS, effectively augmenting the algorithm’s exploration capabilities. The second adaptive strategy, the dynamic Rosenbrock Method (RM), contributes to HGS by adjusting the search direction and step size. This adjustment enables HGS to escape from suboptimal solutions and enhances its convergence accuracy. Combined, these two strategies form the improved algorithm proposed in this study, referred to as RLHGS. To assess the efficacy of the introduced strategies, specific experiments are designed to evaluate the impact of LS-OBL and RM on enhancing HGS performance. The experimental results unequivocally demonstrate that integrating these two strategies significantly enhances the capabilities of HGS. Furthermore, RLHGS is compared against eight state-of-the-art algorithms using 23 well-established benchmark functions and the CEC2020 test suite. The experimental results consistently indicate that RLHGS outperforms the other algorithms, securing the top rank in both test suites. This compelling evidence substantiates the superior functionality and performance of RLHGS compared to its counterparts. Moreover, RLHGS is applied to address four constrained real-world engineering optimization problems. The final results underscore the effectiveness of RLHGS in tackling such problems, further supporting its value as an efficient optimization method.