Cargando…
EEG Emotion Recognition by Fusion of Multi-Scale Features
Electroencephalogram (EEG) signals exhibit low amplitude, complex background noise, randomness, and significant inter-individual differences, which pose challenges in extracting sufficient features and can lead to information loss during the mapping process from low-dimensional feature matrices to h...
Autores principales: | Du, Xiuli, Meng, Yifei, Qiu, Shaoming, Lv, Yana, Liu, Qingli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526490/ https://www.ncbi.nlm.nih.gov/pubmed/37759894 http://dx.doi.org/10.3390/brainsci13091293 |
Ejemplares similares
-
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
por: Yang, Fu, et al.
Publicado: (2019) -
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023) -
CDBA: a novel multi-branch feature fusion model for EEG-based emotion recognition
por: Huang, Zhentao, et al.
Publicado: (2023) -
Granger-Causality-Based Multi-Frequency Band EEG Graph Feature Extraction and Fusion for Emotion Recognition
por: Zhang, Jing, et al.
Publicado: (2022) -
Multidimensional Feature in Emotion Recognition Based on Multi-Channel EEG Signals
por: Li, Qi, et al.
Publicado: (2022)