Cargando…

Two Decades of Arrayed Imaging Reflectometry for Sensitive, High-Throughput Biosensing

Arrayed imaging reflectometry (AIR), first introduced in 2004, is a thin-film interference sensor technique that optimizes optical properties (angle of incidence, polarization, substrate refractive index, and thickness) to create a condition of total destructive interference at the surface of a sili...

Descripción completa

Detalles Bibliográficos
Autores principales: Kosoy, Gabrielle, Miller, Benjamin L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526495/
https://www.ncbi.nlm.nih.gov/pubmed/37754104
http://dx.doi.org/10.3390/bios13090870
Descripción
Sumario:Arrayed imaging reflectometry (AIR), first introduced in 2004, is a thin-film interference sensor technique that optimizes optical properties (angle of incidence, polarization, substrate refractive index, and thickness) to create a condition of total destructive interference at the surface of a silicon substrate. The advantages of AIR are its sensitivity, dynamic range, multiplex capability, and high-throughput compatibility. AIR has been used for the detection of antibodies against coronaviruses, influenza viruses, Staphylococcus aureus, and human autoantigens. It has also shown utility in detection of cytokines, with sensitivity comparable to bead-based and ELISA assays. Not limited to antibodies or antigens, mixed aptamer and protein arrays as well as glycan arrays have been employed in AIR for differentiating influenza strains. Mixed arrays using direct and competitive inhibition assays have enabled simultaneous measurement of cytokines and small molecules. Finally, AIR has also been used to measure affinity constants, kinetic and at equilibrium. In this review, we give an overview of AIR biosensing technologies and present the latest AIR advances.