Cargando…
In Search of Disentanglement in Tandem Mass Spectrometry Datasets
Generative modeling and representation learning of tandem mass spectrometry data aim to learn an interpretable and instrument-agnostic digital representation of metabolites directly from MS/MS spectra. Interpretable and instrument-agnostic digital representations would facilitate comparisons of MS/M...
Autores principales: | Abram, Krzysztof Jan, McCloskey, Douglas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526774/ https://www.ncbi.nlm.nih.gov/pubmed/37759743 http://dx.doi.org/10.3390/biom13091343 |
Ejemplares similares
-
A Comprehensive Evaluation of Metabolomics Data Preprocessing Methods for Deep Learning
por: Abram, Krzysztof Jan, et al.
Publicado: (2022) -
Progressive search in tandem mass spectrometry
por: Joh, Yoonsung, et al.
Publicado: (2023) -
compareMS2 2.0:
An Improved Software for Comparing
Tandem Mass Spectrometry Datasets
por: Marissen, Rob, et al.
Publicado: (2022) -
Analysis of mutagens from cooked foods by directly combined liquid chromatography-mass spectrometry.
por: Edmonds, C G, et al.
Publicado: (1986) -
Two-dimensional mass spectrometry: new perspectives for tandem mass spectrometry
por: van Agthoven, Maria A., et al.
Publicado: (2019)