Cargando…
Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis
Background: Additive manufacturing (three-dimensional (3D) printing) has become a leading manufacturing technique in dentistry due to its various advantages. However, its potential applications for dental ceramics are still being explored. Zirconia, among ceramics, has increasing popularity and appl...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526775/ https://www.ncbi.nlm.nih.gov/pubmed/37754145 http://dx.doi.org/10.3390/biomimetics8050394 |
_version_ | 1785111063120838656 |
---|---|
author | Dewan, Harisha |
author_facet | Dewan, Harisha |
author_sort | Dewan, Harisha |
collection | PubMed |
description | Background: Additive manufacturing (three-dimensional (3D) printing) has become a leading manufacturing technique in dentistry due to its various advantages. However, its potential applications for dental ceramics are still being explored. Zirconia, among ceramics, has increasing popularity and applications in dentistry mostly due to its excellent properties. Although subtractive manufacturing (3D milling) is considered the most advanced technology for the fabrication of zirconia restorations, certain disadvantages are associated with it. Methods: A systematic review was piloted to compare the clinical performance of zirconium crowns that were fabricated using three-dimensional (3D) milling and 3D printing. A meta-analysis was performed, and studies published up to November 2022 were identified. The terms searched were “Zirconium crowns”, “3D printing”, “CAD/CAM” (Computer-Aided Design and Computer-Aided Manufacturing), “Milling”, “dental crowns”, and “3D milling”. The characteristics that were compared were the year in which the study was published, study design, age of the patient, country, the number of crowns, the type of crown fabrication, marginal integrity, caries status, and outcomes. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to structure this systematic review. Out of eleven hundred and fifty titles identified after a primary search, nine articles were included in the quantitative analysis. The research question based on PICO/PECO (Participant, Intervention/exposure, Comparison, and Outcome) was “Do 3D-printed and milled (P) zirconia crowns and FDPs (I) have a better survival rate (O) when conventional prosthesis is also an option (C)”? The data collected were tabulated and compared, and the risk of bias and meta-analysis were later performed. Only nine articles (clinical research) were selected for the study. Since there were no clinical studies on the 3D printing of zirconium crowns, six in vitro studies were considered for the comparison. Zirconium crowns in the milling group had an average minimum follow-up of 6 months. Results: A moderate risk of bias was found, and survival was significant. A high heterogeneity level was noted among the studies. Marginal integrity, periodontal status, and survival rate were high. Linear regression depicted no statistical correlation between the type of cement used and the survival rate. Conclusions: It can be concluded that the milled crowns had a higher performance and satisfactory clinical survival. |
format | Online Article Text |
id | pubmed-10526775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105267752023-09-28 Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis Dewan, Harisha Biomimetics (Basel) Review Background: Additive manufacturing (three-dimensional (3D) printing) has become a leading manufacturing technique in dentistry due to its various advantages. However, its potential applications for dental ceramics are still being explored. Zirconia, among ceramics, has increasing popularity and applications in dentistry mostly due to its excellent properties. Although subtractive manufacturing (3D milling) is considered the most advanced technology for the fabrication of zirconia restorations, certain disadvantages are associated with it. Methods: A systematic review was piloted to compare the clinical performance of zirconium crowns that were fabricated using three-dimensional (3D) milling and 3D printing. A meta-analysis was performed, and studies published up to November 2022 were identified. The terms searched were “Zirconium crowns”, “3D printing”, “CAD/CAM” (Computer-Aided Design and Computer-Aided Manufacturing), “Milling”, “dental crowns”, and “3D milling”. The characteristics that were compared were the year in which the study was published, study design, age of the patient, country, the number of crowns, the type of crown fabrication, marginal integrity, caries status, and outcomes. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to structure this systematic review. Out of eleven hundred and fifty titles identified after a primary search, nine articles were included in the quantitative analysis. The research question based on PICO/PECO (Participant, Intervention/exposure, Comparison, and Outcome) was “Do 3D-printed and milled (P) zirconia crowns and FDPs (I) have a better survival rate (O) when conventional prosthesis is also an option (C)”? The data collected were tabulated and compared, and the risk of bias and meta-analysis were later performed. Only nine articles (clinical research) were selected for the study. Since there were no clinical studies on the 3D printing of zirconium crowns, six in vitro studies were considered for the comparison. Zirconium crowns in the milling group had an average minimum follow-up of 6 months. Results: A moderate risk of bias was found, and survival was significant. A high heterogeneity level was noted among the studies. Marginal integrity, periodontal status, and survival rate were high. Linear regression depicted no statistical correlation between the type of cement used and the survival rate. Conclusions: It can be concluded that the milled crowns had a higher performance and satisfactory clinical survival. MDPI 2023-08-27 /pmc/articles/PMC10526775/ /pubmed/37754145 http://dx.doi.org/10.3390/biomimetics8050394 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Dewan, Harisha Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis |
title | Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis |
title_full | Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis |
title_fullStr | Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis |
title_full_unstemmed | Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis |
title_short | Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis—A Systematic Review and Meta-Analysis |
title_sort | clinical effectiveness of 3d-milled and 3d-printed zirconia prosthesis—a systematic review and meta-analysis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526775/ https://www.ncbi.nlm.nih.gov/pubmed/37754145 http://dx.doi.org/10.3390/biomimetics8050394 |
work_keys_str_mv | AT dewanharisha clinicaleffectivenessof3dmilledand3dprintedzirconiaprosthesisasystematicreviewandmetaanalysis |