Cargando…
Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons
Alzheimer’s disease (AD) is the most prevalent cause of dementia in the elderly, characterized by the presence of amyloid-beta (Aβ) plaques, neurofibrillary tangles, neuroinflammation, synapse loss and neurodegeneration in the brain. The amyloid cascade hypothesis postulates that deposition of Aβ pe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526858/ https://www.ncbi.nlm.nih.gov/pubmed/37761004 http://dx.doi.org/10.3390/biomedicines11092564 |
_version_ | 1785111084283199488 |
---|---|
author | Melo de Farias, Ana Raquel Pelletier, Alexandre Iohan, Lukas Cruz Carvalho Saha, Orthis Bonnefond, Amélie Amouyel, Philippe Delahaye, Fabien Lambert, Jean-Charles Costa, Marcos R. |
author_facet | Melo de Farias, Ana Raquel Pelletier, Alexandre Iohan, Lukas Cruz Carvalho Saha, Orthis Bonnefond, Amélie Amouyel, Philippe Delahaye, Fabien Lambert, Jean-Charles Costa, Marcos R. |
author_sort | Melo de Farias, Ana Raquel |
collection | PubMed |
description | Alzheimer’s disease (AD) is the most prevalent cause of dementia in the elderly, characterized by the presence of amyloid-beta (Aβ) plaques, neurofibrillary tangles, neuroinflammation, synapse loss and neurodegeneration in the brain. The amyloid cascade hypothesis postulates that deposition of Aβ peptides is the causative agent of AD pathology, but we still lack comprehensive understanding of the molecular mechanisms connecting Aβ peptides to neuronal dysfunctions in AD. In this work, we investigate the early effects of Aβ peptide accumulation on the functional properties and gene expression profiles of human-induced neurons (hiNs). We show that hiNs acutely exposed to low concentrations of both cell-secreted Aβ peptides or synthetic Aβ(1–42) exhibit alterations in the frequency of calcium transients suggestive of increased neuronal excitability. Using single-cell RNA sequencing, we also show that cell-secreted Aβ up-regulates the expression of several synapse-related genes and down-regulates the expression of genes associated with metabolic stress mainly in glutamatergic neurons and, to a lesser degree, in GABAergic neurons and astrocytes. These neuronal alterations correlate with activation of the SEMA5, EPHA and NECTIN signaling pathways, which are important regulators of synaptic plasticity. Altogether, our findings indicate that slight elevations in Aβ concentrations are sufficient to elicit transcriptional changes in human neurons, which can contribute to early alterations in neural network activity. |
format | Online Article Text |
id | pubmed-10526858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105268582023-09-28 Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons Melo de Farias, Ana Raquel Pelletier, Alexandre Iohan, Lukas Cruz Carvalho Saha, Orthis Bonnefond, Amélie Amouyel, Philippe Delahaye, Fabien Lambert, Jean-Charles Costa, Marcos R. Biomedicines Article Alzheimer’s disease (AD) is the most prevalent cause of dementia in the elderly, characterized by the presence of amyloid-beta (Aβ) plaques, neurofibrillary tangles, neuroinflammation, synapse loss and neurodegeneration in the brain. The amyloid cascade hypothesis postulates that deposition of Aβ peptides is the causative agent of AD pathology, but we still lack comprehensive understanding of the molecular mechanisms connecting Aβ peptides to neuronal dysfunctions in AD. In this work, we investigate the early effects of Aβ peptide accumulation on the functional properties and gene expression profiles of human-induced neurons (hiNs). We show that hiNs acutely exposed to low concentrations of both cell-secreted Aβ peptides or synthetic Aβ(1–42) exhibit alterations in the frequency of calcium transients suggestive of increased neuronal excitability. Using single-cell RNA sequencing, we also show that cell-secreted Aβ up-regulates the expression of several synapse-related genes and down-regulates the expression of genes associated with metabolic stress mainly in glutamatergic neurons and, to a lesser degree, in GABAergic neurons and astrocytes. These neuronal alterations correlate with activation of the SEMA5, EPHA and NECTIN signaling pathways, which are important regulators of synaptic plasticity. Altogether, our findings indicate that slight elevations in Aβ concentrations are sufficient to elicit transcriptional changes in human neurons, which can contribute to early alterations in neural network activity. MDPI 2023-09-18 /pmc/articles/PMC10526858/ /pubmed/37761004 http://dx.doi.org/10.3390/biomedicines11092564 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Melo de Farias, Ana Raquel Pelletier, Alexandre Iohan, Lukas Cruz Carvalho Saha, Orthis Bonnefond, Amélie Amouyel, Philippe Delahaye, Fabien Lambert, Jean-Charles Costa, Marcos R. Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons |
title | Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons |
title_full | Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons |
title_fullStr | Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons |
title_full_unstemmed | Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons |
title_short | Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons |
title_sort | amyloid-beta peptides trigger premature functional and gene expression alterations in human-induced neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526858/ https://www.ncbi.nlm.nih.gov/pubmed/37761004 http://dx.doi.org/10.3390/biomedicines11092564 |
work_keys_str_mv | AT melodefariasanaraquel amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT pelletieralexandre amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT iohanlukascruzcarvalho amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT sahaorthis amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT bonnefondamelie amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT amouyelphilippe amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT delahayefabien amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT lambertjeancharles amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons AT costamarcosr amyloidbetapeptidestriggerprematurefunctionalandgeneexpressionalterationsinhumaninducedneurons |