Cargando…

Task and Resting-State Functional Connectivity Predict Driving Violations

Aberrant driving behaviors cause accidents; however, there is a lack of understanding of the neural mechanisms underlying these behaviors. To address this issue, a task and resting-state functional connectivity was used to predict aberrant driving behavior and associated personality traits. The stud...

Descripción completa

Detalles Bibliográficos
Autor principal: Ju, Uijong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526865/
https://www.ncbi.nlm.nih.gov/pubmed/37759837
http://dx.doi.org/10.3390/brainsci13091236
Descripción
Sumario:Aberrant driving behaviors cause accidents; however, there is a lack of understanding of the neural mechanisms underlying these behaviors. To address this issue, a task and resting-state functional connectivity was used to predict aberrant driving behavior and associated personality traits. The study included 29 right-handed participants with driving licenses issued for more than 1 year. During the functional magnetic resonance imaging experiment, participants first recorded their resting state and then watched a driving video while continuously rating the risk and speed on each block. Functional connectome-based predictive modeling was employed for whole brain tasks and resting-state functional connectivity to predict driving behavior (violation, error, and lapses), sensation-seeking, and impulsivity. Resting state and task-based functional connectivity were found to significantly predict driving violations, with resting state significantly predicting lapses and task-based functional connectivity showing a tendency to predict errors. Conversely, neither impulsivity nor sensation-seeking was associated with functional connectivity. The results suggest a significant association between aberrant driving behavior, but a nonsignificant association between impulsivity and sensation-seeking, and task-based or resting state functional connectivity. This could provide a deeper understanding of the neural processing underlying reckless driving that may ultimately be used to prevent accidents.