Cargando…
Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design
SIMPLE SUMMARY: This study presents two novel methods for automatically analyzing the distribution of nodal metastases in head and neck (H/N) cancer cohorts. The proposed deep learning method uses lymph node level autosegmentation to automatically assign lymph node metastases to 20 H/N nodal levels....
Autores principales: | Weissmann, Thomas, Mansoorian, Sina, May, Matthias Stefan, Lettmaier, Sebastian, Höfler, Daniel, Deloch, Lisa, Speer, Stefan, Balk, Matthias, Frey, Benjamin, Gaipl, Udo S., Bert, Christoph, Distel, Luitpold Valentin, Walter, Franziska, Belka, Claus, Semrau, Sabine, Iro, Heinrich, Fietkau, Rainer, Huang, Yixing, Putz, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526893/ https://www.ncbi.nlm.nih.gov/pubmed/37760588 http://dx.doi.org/10.3390/cancers15184620 |
Ejemplares similares
-
Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy
por: Weissmann, Thomas, et al.
Publicado: (2023) -
The Distribution of Pelvic Nodal Metastases in Prostate Cancer Reveals Potential to Advance and Personalize Pelvic Radiotherapy
por: Filimonova, Irina, et al.
Publicado: (2021) -
Transient Enlargement in Meningiomas Treated with Stereotactic Radiotherapy
por: Maksoud, Ziad, et al.
Publicado: (2022) -
Benchmarking ChatGPT-4 on a radiation oncology in-training exam and Red Journal Gray Zone cases: potentials and challenges for ai-assisted medical education and decision making in radiation oncology
por: Huang, Yixing, et al.
Publicado: (2023) -
Low-dose radiotherapy of osteoarthritis: from biological findings to clinical effects—challenges for future studies
por: Weissmann, Thomas, et al.
Publicado: (2023)