Cargando…
A Radiomic-Based Machine Learning Model Predicts Endometrial Cancer Recurrence Using Preoperative CT Radiomic Features: A Pilot Study
SIMPLE SUMMARY: Accurate prediction of the risk of endometrial cancer (EC) recurrence is crucial to identify the best treatment and achieve the most favorable outcome. Currently, no model is available to predict this recurrence risk using pre-surgical computed tomography (CT) scans. This pilot study...
Autores principales: | Coada, Camelia Alexandra, Santoro, Miriam, Zybin, Vladislav, Di Stanislao, Marco, Paolani, Giulia, Modolon, Cecilia, Di Costanzo, Stella, Genovesi, Lucia, Tesei, Marco, De Leo, Antonio, Ravegnini, Gloria, De Biase, Dario, Morganti, Alessio Giuseppe, Lovato, Luigi, De Iaco, Pierandrea, Strigari, Lidia, Perrone, Anna Myriam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526953/ https://www.ncbi.nlm.nih.gov/pubmed/37760503 http://dx.doi.org/10.3390/cancers15184534 |
Ejemplares similares
-
Post-operative residual disease and number of cycles of neoadjuvant chemotherapy in advanced epithelial ovarian carcinoma
por: Perrone, Anna Myriam, et al.
Publicado: (2023) -
Classification Systems of Endometrial Cancer: A Comparative Study about Old and New
por: Coada, Camelia Alexandra, et al.
Publicado: (2021) -
Optimal number of neoadjuvant chemotherapy cycles prior to interval debulking surgery in advanced epithelial ovarian cancer: a systematic review and meta-analysis of progression-free survival and overall survival
por: Coada, Camelia Alexandra, et al.
Publicado: (2023) -
Radiomics and Artificial Intelligence in Uterine Sarcomas: A Systematic Review
por: Ravegnini, Gloria, et al.
Publicado: (2021) -
Radiomics and artificial intelligence in malignant uterine body cancers: Protocol for a systematic review
por: Ravegnini, Gloria, et al.
Publicado: (2022)