Cargando…
Radiomics Features on Magnetic Resonance Images Can Predict C5aR1 Expression Levels and Prognosis in High-Grade Glioma
SIMPLE SUMMARY: High-grade glioma is a complex disease characterized by genome instability caused by the accumulation of genetic alterations. Identifying and evaluating the oncogenes involved is crucial for determining treatment strategies and evaluating prognosis. In this study, we suggest a potent...
Autores principales: | Wu, Zijun, Yang, Yuan, Zha, Yunfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527364/ https://www.ncbi.nlm.nih.gov/pubmed/37760630 http://dx.doi.org/10.3390/cancers15184661 |
Ejemplares similares
-
Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences
por: Qin, Jiang-bo, et al.
Publicado: (2017) -
Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features
por: Ning, Zhenyuan, et al.
Publicado: (2021) -
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas
por: Liu, Zhen, et al.
Publicado: (2023) -
Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain
por: Kumar, Anuj, et al.
Publicado: (2023) -
The combination of radiomics features and VASARI standard to predict glioma grade
por: You, Wei, et al.
Publicado: (2023)