Cargando…
Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters
Electroencephalography (EEG) signals offer invaluable insights into diverse activities of the human brain, including the intricate physiological and psychological responses associated with mental stress. A major challenge, however, is accurately identifying mental stress while mitigating the limitat...
Autores principales: | Hag, Ala, Al-Shargie, Fares, Handayani, Dini, Asadi, Houshyar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527440/ https://www.ncbi.nlm.nih.gov/pubmed/37759941 http://dx.doi.org/10.3390/brainsci13091340 |
Ejemplares similares
-
Enhancing EEG-Based Mental Stress State Recognition Using an Improved Hybrid Feature Selection Algorithm
por: Hag, Ala, et al.
Publicado: (2021) -
EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features
por: Hag, Ala, et al.
Publicado: (2021) -
Human behavior in free search online shopping scenarios can be predicted from EEG activation using Hjorth parameters
por: Horr, Ninja Katja, et al.
Publicado: (2023) -
ECG based apnea detection by multirate processing hybrid of wavelet-empirical decomposition Hjorth features extraction and neural networks
por: Khandelwal, Sarika, et al.
Publicado: (2023) -
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
por: Ge, Sheng, et al.
Publicado: (2014)