Cargando…

An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses

Accurate estimations of the concentrations of soluble compounds are crucial for optimizing bioprocesses involving Escherichia coli (E. coli). This study proposes a hybrid model structure that leverages off-gas analysis data and physiological parameters, including the average biomass age and specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Masaitis, Deividas, Urniezius, Renaldas, Simutis, Rimvydas, Vaitkus, Vygandas, Matukaitis, Mindaugas, Kemesis, Benas, Galvanauskas, Vytautas, Sinkevicius, Benas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527678/
https://www.ncbi.nlm.nih.gov/pubmed/37761601
http://dx.doi.org/10.3390/e25091302
_version_ 1785111173476122624
author Masaitis, Deividas
Urniezius, Renaldas
Simutis, Rimvydas
Vaitkus, Vygandas
Matukaitis, Mindaugas
Kemesis, Benas
Galvanauskas, Vytautas
Sinkevicius, Benas
author_facet Masaitis, Deividas
Urniezius, Renaldas
Simutis, Rimvydas
Vaitkus, Vygandas
Matukaitis, Mindaugas
Kemesis, Benas
Galvanauskas, Vytautas
Sinkevicius, Benas
author_sort Masaitis, Deividas
collection PubMed
description Accurate estimations of the concentrations of soluble compounds are crucial for optimizing bioprocesses involving Escherichia coli (E. coli). This study proposes a hybrid model structure that leverages off-gas analysis data and physiological parameters, including the average biomass age and specific growth rate, to estimate soluble compounds such as acetate and glutamate in fed-batch cultivations We used a hybrid recurrent neural network to establish the relationships between these parameters. To enhance the precision of the estimates, the model incorporates ensemble averaging and information gain. Ensemble averaging combines varying model inputs, leading to more robust representations of the underlying dynamics in E. coli bioprocesses. Our hybrid model estimates acetates with 1% and 8% system precision using data from the first site and the second site at GSK plc, respectively. Using the data from the second site, the precision of the approach for other solutes was as fallows: isoleucine −8%, lactate and glutamate −9%, and a 13% error for glutamine., These results, demonstrate its practical potential.
format Online
Article
Text
id pubmed-10527678
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105276782023-09-28 An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses Masaitis, Deividas Urniezius, Renaldas Simutis, Rimvydas Vaitkus, Vygandas Matukaitis, Mindaugas Kemesis, Benas Galvanauskas, Vytautas Sinkevicius, Benas Entropy (Basel) Article Accurate estimations of the concentrations of soluble compounds are crucial for optimizing bioprocesses involving Escherichia coli (E. coli). This study proposes a hybrid model structure that leverages off-gas analysis data and physiological parameters, including the average biomass age and specific growth rate, to estimate soluble compounds such as acetate and glutamate in fed-batch cultivations We used a hybrid recurrent neural network to establish the relationships between these parameters. To enhance the precision of the estimates, the model incorporates ensemble averaging and information gain. Ensemble averaging combines varying model inputs, leading to more robust representations of the underlying dynamics in E. coli bioprocesses. Our hybrid model estimates acetates with 1% and 8% system precision using data from the first site and the second site at GSK plc, respectively. Using the data from the second site, the precision of the approach for other solutes was as fallows: isoleucine −8%, lactate and glutamate −9%, and a 13% error for glutamine., These results, demonstrate its practical potential. MDPI 2023-09-06 /pmc/articles/PMC10527678/ /pubmed/37761601 http://dx.doi.org/10.3390/e25091302 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Masaitis, Deividas
Urniezius, Renaldas
Simutis, Rimvydas
Vaitkus, Vygandas
Matukaitis, Mindaugas
Kemesis, Benas
Galvanauskas, Vytautas
Sinkevicius, Benas
An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses
title An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses
title_full An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses
title_fullStr An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses
title_full_unstemmed An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses
title_short An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses
title_sort approach for the estimation of concentrations of soluble compounds in e. coli bioprocesses
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527678/
https://www.ncbi.nlm.nih.gov/pubmed/37761601
http://dx.doi.org/10.3390/e25091302
work_keys_str_mv AT masaitisdeividas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT urnieziusrenaldas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT simutisrimvydas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT vaitkusvygandas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT matukaitismindaugas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT kemesisbenas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT galvanauskasvytautas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT sinkeviciusbenas anapproachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT masaitisdeividas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT urnieziusrenaldas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT simutisrimvydas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT vaitkusvygandas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT matukaitismindaugas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT kemesisbenas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT galvanauskasvytautas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses
AT sinkeviciusbenas approachfortheestimationofconcentrationsofsolublecompoundsinecolibioprocesses