Cargando…
Community-Based Matrix Factorization (CBMF) Approach for Enhancing Quality of Recommendations
Matrix factorization is a long-established method employed for analyzing and extracting valuable insight recommendations from complex networks containing user ratings. The execution time and computational resources demanded by these algorithms pose limitations when confronted with large datasets. Co...
Autores principales: | Tokala, Srilatha, Enduri, Murali Krishna, Lakshmi, T. Jaya, Sharma, Hemlata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528144/ https://www.ncbi.nlm.nih.gov/pubmed/37761659 http://dx.doi.org/10.3390/e25091360 |
Ejemplares similares
-
Computing Influential Nodes Using the Nearest Neighborhood Trust Value and PageRank in Complex Networks
por: Hajarathaiah, Koduru, et al.
Publicado: (2022) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022) -
Design and synthesis of thiadiazolo-carboxamide bridged β-carboline-indole hybrids: DNA intercalative topo-IIα inhibition with promising antiproliferative activity
por: Tokala, Ramya, et al.
Publicado: (2020) -
Matrix and tensor factorization techniques for recommender systems
por: Symeonidis, Panagiotis, et al.
Publicado: (2017) -
Hybrid Recommendation Network Model with a Synthesis of Social Matrix Factorization and Link Probability Functions
por: Kumar, Balraj, et al.
Publicado: (2023)