Cargando…
Stock Market Forecasting Based on Spatiotemporal Deep Learning
This study introduces the Spacetimeformer model, a novel approach for predicting stock prices, leveraging the Transformer architecture with a time–space mechanism to capture both spatial and temporal interactions among stocks. Traditional Long–Short Term Memory (LSTM) and recent Transformer models l...
Autores principales: | Li, Yung-Chen, Huang, Hsiao-Yun, Yang, Nan-Ping, Kung, Yi-Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528303/ https://www.ncbi.nlm.nih.gov/pubmed/37761625 http://dx.doi.org/10.3390/e25091326 |
Ejemplares similares
-
Investigating Deep Stock Market Forecasting with Sentiment Analysis
por: Liapis, Charalampos M., et al.
Publicado: (2023) -
Housing market forecasts via stock market indicators
por: Mittal, Varun, et al.
Publicado: (2023) -
Deep Learning for Stock Market Prediction
por: Nabipour, M., et al.
Publicado: (2020) -
COVID-19 forecasts via stock market indicators
por: Liang, Yi, et al.
Publicado: (2022) -
Forecasting China’s stock market risk under the background of the Stock Connect programs
por: Chen, Wei, et al.
Publicado: (2023)