Cargando…
A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
The efficiency and cognitive limitations of manual sample labeling result in a large number of unlabeled training samples in practical applications. Making full use of both labeled and unlabeled samples is the key to solving the semi-supervised problem. However, as a supervised algorithm, the stacke...
Autores principales: | Lai, Jie, Wang, Xiaodan, Xiang, Qian, Quan, Wen, Song, Yafei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528325/ https://www.ncbi.nlm.nih.gov/pubmed/37761573 http://dx.doi.org/10.3390/e25091274 |
Ejemplares similares
-
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
por: Nejedly, Petr, et al.
Publicado: (2023) -
Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling
por: Liu, Kun, et al.
Publicado: (2022) -
Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process
por: Mendes, Andre, et al.
Publicado: (2020) -
Improved semi-supervised autoencoder for deception detection
por: Fu, Hongliang, et al.
Publicado: (2019) -
An Improved Stacked Autoencoder for Metabolomic Data Classification
por: Fan, Xiaojing, et al.
Publicado: (2021)