Cargando…
Adaptive MCMC for Bayesian Variable Selection in Generalised Linear Models and Survival Models
Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions to the marginal likelihood. The Reversible Jump Markov Chain Monte Carlo (R...
Autores principales: | Liang, Xitong, Livingstone, Samuel, Griffin, Jim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528396/ https://www.ncbi.nlm.nih.gov/pubmed/37761609 http://dx.doi.org/10.3390/e25091310 |
Ejemplares similares
-
Comparing MCMC and INLA for disease mapping with Bayesian hierarchical models
por: De Smedt, Tom, et al.
Publicado: (2015) -
BESSiE: a software for linear model BLUP and Bayesian MCMC analysis of large-scale genomic data
por: Boerner, Vinzent, et al.
Publicado: (2016) -
Likelihood, Bayesian, and mcmc methods in quantitative genetics
por: Sorensen, Daniel, et al.
Publicado: (2002) -
The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC
por: Livingstone, Samuel, et al.
Publicado: (2022) -
Approximation of the Cox survival regression model by MCMC Bayesian Hierarchical Poisson modelling of factors associated with childhood mortality in Nigeria
por: Fagbamigbe, A. F., et al.
Publicado: (2021)