Cargando…
One-Stage Detection without Segmentation for Multi-Type Coronary Lesions in Angiography Images Using Deep Learning
It is rare to use the one-stage model without segmentation for the automatic detection of coronary lesions. This study sequentially enrolled 200 patients with significant stenoses and occlusions of the right coronary and categorized their angiography images into two angle views: The CRA (cranial) vi...
Autores principales: | Wu, Hui, Zhao, Jing, Li, Jiehui, Zeng, Yan, Wu, Weiwei, Zhou, Zhuhuang, Wu, Shuicai, Xu, Liang, Song, Min, Yu, Qibin, Song, Ziwei, Chen, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528585/ https://www.ncbi.nlm.nih.gov/pubmed/37761378 http://dx.doi.org/10.3390/diagnostics13183011 |
Ejemplares similares
-
Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts
por: Wu, Weiwei, et al.
Publicado: (2016) -
3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C-Means and Graph Cuts
por: Wu, Weiwei, et al.
Publicado: (2017) -
An Improved Fuzzy Connectedness Method for Automatic Three-Dimensional Liver Vessel Segmentation in CT Images
por: Zhang, Rui, et al.
Publicado: (2018) -
Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study
por: Zhou, Zhuhuang, et al.
Publicado: (2019) -
Classification of Benign and Malignant Breast Tumors Using H-Scan Ultrasound Imaging
por: Ouyang, Yali, et al.
Publicado: (2019)