Cargando…
An Enhanced Neural Network Algorithm with Quasi-Oppositional-Based and Chaotic Sine-Cosine Learning Strategies
Global optimization problems have been a research topic of great interest in various engineering applications among which neural network algorithm (NNA) is one of the most widely used methods. However, it is inevitable for neural network algorithms to plunge into poor local optima and convergence wh...
Autores principales: | Xiong, Xuan, Li, Shaobo, Wu, Fengbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528600/ https://www.ncbi.nlm.nih.gov/pubmed/37761554 http://dx.doi.org/10.3390/e25091255 |
Ejemplares similares
-
CSCAHHO: Chaotic hybridization algorithm of the Sine Cosine with Harris Hawk optimization algorithms for solving global optimization problems
por: Zhang, Yu-Jun, et al.
Publicado: (2022) -
Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application
por: Bacanin, Nebojsa, et al.
Publicado: (2022) -
Boosted Sine Cosine Algorithm with Application to Medical Diagnosis
por: Ye, Xiaojia, et al.
Publicado: (2022) -
Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection
por: Abed-alguni, Bilal H., et al.
Publicado: (2022) -
Economic load dispatch using memetic sine cosine algorithm
por: Al-Betar, Mohammed Azmi, et al.
Publicado: (2022)