Cargando…
High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors
Multivariate autoregressive (MVAR) model estimation enables assessment of causal interactions in brain networks. However, accurately estimating MVAR models for high-dimensional electrophysiological recordings is challenging due to the extensive data requirements. Hence, the applicability of MVAR mod...
Autores principales: | Nagle, Alliot, Gerrelts, Josh P., Krause, Bryan M., Boes, Aaron D., Bruss, Joel E., Nourski, Kirill V., Banks, Matthew I., Van Veen, Barry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528866/ https://www.ncbi.nlm.nih.gov/pubmed/37385393 http://dx.doi.org/10.1016/j.neuroimage.2023.120211 |
Ejemplares similares
-
Multivariate autoregressive model estimation for high-dimensional intracranial electrophysiological data
por: Endemann, Christopher M., et al.
Publicado: (2022) -
Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology
por: Banks, Matthew I., et al.
Publicado: (2023) -
Auditory processing in the human cortex: An intracranial electrophysiology perspective
por: Nourski, Kirill V.
Publicado: (2017) -
Multivariate autoregressive models with exogenous inputs for intracerebral responses to direct electrical stimulation of the human brain
por: Chang, Jui-Yang, et al.
Publicado: (2012) -
Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models
por: Smith, Jason F., et al.
Publicado: (2013)