Cargando…
Automated Diagnosis for Colon Cancer Diseases Using Stacking Transformer Models and Explainable Artificial Intelligence
Colon cancer is the third most common cancer type worldwide in 2020, almost two million cases were diagnosed. As a result, providing new, highly accurate techniques in detecting colon cancer leads to early and successful treatment of this disease. This paper aims to propose a heterogenic stacking de...
Autores principales: | Gabralla, Lubna Abdelkareim, Hussien, Ali Mohamed, AlMohimeed, Abdulaziz, Saleh, Hager, Alsekait, Deema Mohammed, El-Sappagh, Shaker, Ali, Abdelmgeid A., Refaat Hassan, Moatamad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529133/ https://www.ncbi.nlm.nih.gov/pubmed/37761306 http://dx.doi.org/10.3390/diagnostics13182939 |
Ejemplares similares
-
Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction
por: Almulihi, Ahmed, et al.
Publicado: (2022) -
Diagnosis of COVID-19 Using Chest X-ray Images and Disease Symptoms Based on Stacking Ensemble Deep Learning
por: AlMohimeed, Abdulaziz, et al.
Publicado: (2023) -
Polycystic Ovary Syndrome Detection Machine Learning Model Based on Optimized Feature Selection and Explainable Artificial Intelligence
por: Elmannai, Hela, et al.
Publicado: (2023) -
Kids’ Emotion Recognition Using Various Deep-Learning Models with Explainable AI
por: Rathod, Manish, et al.
Publicado: (2022) -
Test Case Prioritization, Selection, and Reduction Using Improved Quantum-Behaved Particle Swarm Optimization
por: Bajaj, Anu, et al.
Publicado: (2022)