Cargando…

Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States

We develop a new model for spatio-temporal data. More specifically, a graph penalty function is incorporated in the cost function in order to estimate the unknown parameters of a spatio-temporal mixed-effect model based on a generalized linear model. This model allows for more flexible and general r...

Descripción completa

Detalles Bibliográficos
Autores principales: Tayewo, Roméo, Septier, François, Nevat, Ido, Peters, Gareth W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529149/
https://www.ncbi.nlm.nih.gov/pubmed/37761572
http://dx.doi.org/10.3390/e25091272
_version_ 1785111351563124736
author Tayewo, Roméo
Septier, François
Nevat, Ido
Peters, Gareth W.
author_facet Tayewo, Roméo
Septier, François
Nevat, Ido
Peters, Gareth W.
author_sort Tayewo, Roméo
collection PubMed
description We develop a new model for spatio-temporal data. More specifically, a graph penalty function is incorporated in the cost function in order to estimate the unknown parameters of a spatio-temporal mixed-effect model based on a generalized linear model. This model allows for more flexible and general regression relationships than classical linear ones through the use of generalized linear models (GLMs) and also captures the inherent structural dependencies or relationships of the data through this regularization based on the graph Laplacian. We use a publicly available dataset from the National Centers for Environmental Information (NCEI) in the United States of America and perform statistical inferences of future CO [Formula: see text] emissions in 59 counties. We empirically show how the proposed method outperforms widely used methods, such as the ordinary least squares (OLS) and ridge regression for this challenging problem.
format Online
Article
Text
id pubmed-10529149
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105291492023-09-28 Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States Tayewo, Roméo Septier, François Nevat, Ido Peters, Gareth W. Entropy (Basel) Article We develop a new model for spatio-temporal data. More specifically, a graph penalty function is incorporated in the cost function in order to estimate the unknown parameters of a spatio-temporal mixed-effect model based on a generalized linear model. This model allows for more flexible and general regression relationships than classical linear ones through the use of generalized linear models (GLMs) and also captures the inherent structural dependencies or relationships of the data through this regularization based on the graph Laplacian. We use a publicly available dataset from the National Centers for Environmental Information (NCEI) in the United States of America and perform statistical inferences of future CO [Formula: see text] emissions in 59 counties. We empirically show how the proposed method outperforms widely used methods, such as the ordinary least squares (OLS) and ridge regression for this challenging problem. MDPI 2023-08-29 /pmc/articles/PMC10529149/ /pubmed/37761572 http://dx.doi.org/10.3390/e25091272 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tayewo, Roméo
Septier, François
Nevat, Ido
Peters, Gareth W.
Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States
title Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States
title_full Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States
title_fullStr Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States
title_full_unstemmed Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States
title_short Graph Regression Model for Spatial and Temporal Environmental Data—Case of Carbon Dioxide Emissions in the United States
title_sort graph regression model for spatial and temporal environmental data—case of carbon dioxide emissions in the united states
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529149/
https://www.ncbi.nlm.nih.gov/pubmed/37761572
http://dx.doi.org/10.3390/e25091272
work_keys_str_mv AT tayeworomeo graphregressionmodelforspatialandtemporalenvironmentaldatacaseofcarbondioxideemissionsintheunitedstates
AT septierfrancois graphregressionmodelforspatialandtemporalenvironmentaldatacaseofcarbondioxideemissionsintheunitedstates
AT nevatido graphregressionmodelforspatialandtemporalenvironmentaldatacaseofcarbondioxideemissionsintheunitedstates
AT petersgarethw graphregressionmodelforspatialandtemporalenvironmentaldatacaseofcarbondioxideemissionsintheunitedstates