Cargando…
CLIP-Driven Prototype Network for Few-Shot Semantic Segmentation
Recent research has shown that visual–text pretrained models perform well in traditional vision tasks. CLIP, as the most influential work, has garnered significant attention from researchers. Thanks to its excellent visual representation capabilities, many recent studies have used CLIP for pixel-lev...
Autores principales: | Guo, Shi-Cheng, Liu, Shang-Kun, Wang, Jing-Yu, Zheng, Wei-Min, Jiang, Cheng-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529322/ https://www.ncbi.nlm.nih.gov/pubmed/37761652 http://dx.doi.org/10.3390/e25091353 |
Ejemplares similares
-
MCEENet: Multi-Scale Context Enhancement and Edge-Assisted Network for Few-Shot Semantic Segmentation
por: Zhou, Hongjie, et al.
Publicado: (2023) -
Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation
por: Song, Kechen, et al.
Publicado: (2023) -
Few-Shot network intrusion detection based on prototypical capsule network with attention mechanism
por: Sun, Handi, et al.
Publicado: (2023) -
FS-RSDD: Few-Shot Rail Surface Defect Detection with Prototype Learning
por: Min, Yongzhi, et al.
Publicado: (2023) -
Few-shot segmentation with duplex network and attention augmented module
por: Zeng, Sifu, et al.
Publicado: (2023)