Cargando…

Network Analysis of Depression Using Magnetoencephalogram Based on Polynomial Kernel Granger Causality

Depression is a psychiatric disorder characterized by anxiety, pessimism, and suicidal tendencies, which has serious impact on human’s life. In this paper, we use Granger causality index based on polynomial kernel as network node connectivity coefficient to construct brain networks from the magnetoe...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yijia, Qian, Jing, Gu, Qizhang, Yi, Wanyi, Yan, Wei, Yuan, Jianxuan, Wang, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529343/
https://www.ncbi.nlm.nih.gov/pubmed/37761629
http://dx.doi.org/10.3390/e25091330
Descripción
Sumario:Depression is a psychiatric disorder characterized by anxiety, pessimism, and suicidal tendencies, which has serious impact on human’s life. In this paper, we use Granger causality index based on polynomial kernel as network node connectivity coefficient to construct brain networks from the magnetoencephalogram (MEG) of 5 depressed patients and 11 healthy individuals under positive, neutral, and negative emotional stimuli, respectively. We found that depressed patients had more information exchange between the frontal and occipital regions compared to healthy individuals and less causal connections in the parietal and central regions. We further analyzed the topological properties of the network revealed and found that depressed patients had higher average degrees under negative stimuli (p = 0.008) and lower average clustering coefficients than healthy individuals (p = 0.034). When comparing the average degree and average clustering coefficient of the same sample under different emotional stimuli, we found that depressed patients had a higher average degree and average clustering coefficient under negative stimuli than neutral and positive stimuli. We also found that the characteristic path lengths of patients under negative and neutral stimuli significantly deviated from small-world network. Our results suggest that the analysis of polynomial kernel Granger causality brain networks can effectively characterize the pathology of depression.