Cargando…

A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing

Low-dose computed tomography (LDCT) has attracted significant attention in the domain of medical imaging due to the inherent risks of normal-dose computed tomography (NDCT) based X-ray radiations to patients. However, reducing radiation dose in CT imaging produces noise and artifacts that degrade im...

Descripción completa

Detalles Bibliográficos
Autores principales: Lepcha, Dawa Chyophel, Dogra, Ayush, Goyal, Bhawna, Goyal, Vishal, Kukreja, Vinay, Bavirisetti, Durga Prasad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529561/
https://www.ncbi.nlm.nih.gov/pubmed/37756296
http://dx.doi.org/10.1371/journal.pone.0291911
_version_ 1785111404413452288
author Lepcha, Dawa Chyophel
Dogra, Ayush
Goyal, Bhawna
Goyal, Vishal
Kukreja, Vinay
Bavirisetti, Durga Prasad
author_facet Lepcha, Dawa Chyophel
Dogra, Ayush
Goyal, Bhawna
Goyal, Vishal
Kukreja, Vinay
Bavirisetti, Durga Prasad
author_sort Lepcha, Dawa Chyophel
collection PubMed
description Low-dose computed tomography (LDCT) has attracted significant attention in the domain of medical imaging due to the inherent risks of normal-dose computed tomography (NDCT) based X-ray radiations to patients. However, reducing radiation dose in CT imaging produces noise and artifacts that degrade image quality and subsequently hinders medical disease diagnostic performance. In order to address these problems, this research article presents a competent low-dose computed tomography image denoising algorithm based on a constructive non-local means algorithm with morphological residual processing to achieve the task of removing noise from the LDCT images. We propose an innovative constructive non-local image filtering algorithm by means of applications in low-dose computed tomography technology. The nonlocal mean filter that was recently proposed was modified to construct our denoising algorithm. It constructs the discrete property of neighboring filtering to enable rapid vectorized and parallel implantation in contemporary shared memory computer platforms while simultaneously decreases computing complexity. Subsequently, the proposed method performs faster computation compared to a non-vectorized and serial implementation in terms of speed and scales linearly with image dimension. In addition, the morphological residual processing is employed for the purpose of edge-preserving image processing. It combines linear lowpass filtering with a nonlinear technique that enables the extraction of meaningful regions where edges could be preserved while removing residual artifacts from the images. Experimental results demonstrate that the proposed algorithm preserves more textural and structural features while reducing noise, enhances edges and significantly improves image quality more effectively. The proposed research article obtains better results both qualitatively and quantitively when compared to other comparative algorithms on publicly accessible datasets.
format Online
Article
Text
id pubmed-10529561
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-105295612023-09-28 A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing Lepcha, Dawa Chyophel Dogra, Ayush Goyal, Bhawna Goyal, Vishal Kukreja, Vinay Bavirisetti, Durga Prasad PLoS One Research Article Low-dose computed tomography (LDCT) has attracted significant attention in the domain of medical imaging due to the inherent risks of normal-dose computed tomography (NDCT) based X-ray radiations to patients. However, reducing radiation dose in CT imaging produces noise and artifacts that degrade image quality and subsequently hinders medical disease diagnostic performance. In order to address these problems, this research article presents a competent low-dose computed tomography image denoising algorithm based on a constructive non-local means algorithm with morphological residual processing to achieve the task of removing noise from the LDCT images. We propose an innovative constructive non-local image filtering algorithm by means of applications in low-dose computed tomography technology. The nonlocal mean filter that was recently proposed was modified to construct our denoising algorithm. It constructs the discrete property of neighboring filtering to enable rapid vectorized and parallel implantation in contemporary shared memory computer platforms while simultaneously decreases computing complexity. Subsequently, the proposed method performs faster computation compared to a non-vectorized and serial implementation in terms of speed and scales linearly with image dimension. In addition, the morphological residual processing is employed for the purpose of edge-preserving image processing. It combines linear lowpass filtering with a nonlinear technique that enables the extraction of meaningful regions where edges could be preserved while removing residual artifacts from the images. Experimental results demonstrate that the proposed algorithm preserves more textural and structural features while reducing noise, enhances edges and significantly improves image quality more effectively. The proposed research article obtains better results both qualitatively and quantitively when compared to other comparative algorithms on publicly accessible datasets. Public Library of Science 2023-09-27 /pmc/articles/PMC10529561/ /pubmed/37756296 http://dx.doi.org/10.1371/journal.pone.0291911 Text en © 2023 Lepcha et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lepcha, Dawa Chyophel
Dogra, Ayush
Goyal, Bhawna
Goyal, Vishal
Kukreja, Vinay
Bavirisetti, Durga Prasad
A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
title A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
title_full A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
title_fullStr A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
title_full_unstemmed A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
title_short A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
title_sort constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529561/
https://www.ncbi.nlm.nih.gov/pubmed/37756296
http://dx.doi.org/10.1371/journal.pone.0291911
work_keys_str_mv AT lepchadawachyophel aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT dograayush aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT goyalbhawna aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT goyalvishal aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT kukrejavinay aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT bavirisettidurgaprasad aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT lepchadawachyophel constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT dograayush constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT goyalbhawna constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT goyalvishal constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT kukrejavinay constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing
AT bavirisettidurgaprasad constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing