Cargando…
A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing
Low-dose computed tomography (LDCT) has attracted significant attention in the domain of medical imaging due to the inherent risks of normal-dose computed tomography (NDCT) based X-ray radiations to patients. However, reducing radiation dose in CT imaging produces noise and artifacts that degrade im...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529561/ https://www.ncbi.nlm.nih.gov/pubmed/37756296 http://dx.doi.org/10.1371/journal.pone.0291911 |
_version_ | 1785111404413452288 |
---|---|
author | Lepcha, Dawa Chyophel Dogra, Ayush Goyal, Bhawna Goyal, Vishal Kukreja, Vinay Bavirisetti, Durga Prasad |
author_facet | Lepcha, Dawa Chyophel Dogra, Ayush Goyal, Bhawna Goyal, Vishal Kukreja, Vinay Bavirisetti, Durga Prasad |
author_sort | Lepcha, Dawa Chyophel |
collection | PubMed |
description | Low-dose computed tomography (LDCT) has attracted significant attention in the domain of medical imaging due to the inherent risks of normal-dose computed tomography (NDCT) based X-ray radiations to patients. However, reducing radiation dose in CT imaging produces noise and artifacts that degrade image quality and subsequently hinders medical disease diagnostic performance. In order to address these problems, this research article presents a competent low-dose computed tomography image denoising algorithm based on a constructive non-local means algorithm with morphological residual processing to achieve the task of removing noise from the LDCT images. We propose an innovative constructive non-local image filtering algorithm by means of applications in low-dose computed tomography technology. The nonlocal mean filter that was recently proposed was modified to construct our denoising algorithm. It constructs the discrete property of neighboring filtering to enable rapid vectorized and parallel implantation in contemporary shared memory computer platforms while simultaneously decreases computing complexity. Subsequently, the proposed method performs faster computation compared to a non-vectorized and serial implementation in terms of speed and scales linearly with image dimension. In addition, the morphological residual processing is employed for the purpose of edge-preserving image processing. It combines linear lowpass filtering with a nonlinear technique that enables the extraction of meaningful regions where edges could be preserved while removing residual artifacts from the images. Experimental results demonstrate that the proposed algorithm preserves more textural and structural features while reducing noise, enhances edges and significantly improves image quality more effectively. The proposed research article obtains better results both qualitatively and quantitively when compared to other comparative algorithms on publicly accessible datasets. |
format | Online Article Text |
id | pubmed-10529561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105295612023-09-28 A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing Lepcha, Dawa Chyophel Dogra, Ayush Goyal, Bhawna Goyal, Vishal Kukreja, Vinay Bavirisetti, Durga Prasad PLoS One Research Article Low-dose computed tomography (LDCT) has attracted significant attention in the domain of medical imaging due to the inherent risks of normal-dose computed tomography (NDCT) based X-ray radiations to patients. However, reducing radiation dose in CT imaging produces noise and artifacts that degrade image quality and subsequently hinders medical disease diagnostic performance. In order to address these problems, this research article presents a competent low-dose computed tomography image denoising algorithm based on a constructive non-local means algorithm with morphological residual processing to achieve the task of removing noise from the LDCT images. We propose an innovative constructive non-local image filtering algorithm by means of applications in low-dose computed tomography technology. The nonlocal mean filter that was recently proposed was modified to construct our denoising algorithm. It constructs the discrete property of neighboring filtering to enable rapid vectorized and parallel implantation in contemporary shared memory computer platforms while simultaneously decreases computing complexity. Subsequently, the proposed method performs faster computation compared to a non-vectorized and serial implementation in terms of speed and scales linearly with image dimension. In addition, the morphological residual processing is employed for the purpose of edge-preserving image processing. It combines linear lowpass filtering with a nonlinear technique that enables the extraction of meaningful regions where edges could be preserved while removing residual artifacts from the images. Experimental results demonstrate that the proposed algorithm preserves more textural and structural features while reducing noise, enhances edges and significantly improves image quality more effectively. The proposed research article obtains better results both qualitatively and quantitively when compared to other comparative algorithms on publicly accessible datasets. Public Library of Science 2023-09-27 /pmc/articles/PMC10529561/ /pubmed/37756296 http://dx.doi.org/10.1371/journal.pone.0291911 Text en © 2023 Lepcha et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lepcha, Dawa Chyophel Dogra, Ayush Goyal, Bhawna Goyal, Vishal Kukreja, Vinay Bavirisetti, Durga Prasad A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing |
title | A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing |
title_full | A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing |
title_fullStr | A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing |
title_full_unstemmed | A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing |
title_short | A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing |
title_sort | constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529561/ https://www.ncbi.nlm.nih.gov/pubmed/37756296 http://dx.doi.org/10.1371/journal.pone.0291911 |
work_keys_str_mv | AT lepchadawachyophel aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT dograayush aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT goyalbhawna aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT goyalvishal aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT kukrejavinay aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT bavirisettidurgaprasad aconstructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT lepchadawachyophel constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT dograayush constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT goyalbhawna constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT goyalvishal constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT kukrejavinay constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing AT bavirisettidurgaprasad constructivenonlocalmeansalgorithmforlowdosecomputedtomographydenoisingwithmorphologicalresidualprocessing |