Cargando…
MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data
Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets has brought benefits such as higher statistical power, reliability, and robustness to the studies. Despite these promises from growth in sample size, substantial technical variability stemming from diffe...
Autores principales: | Torbati, Mahbaneh Eshaghzadeh, Minhas, Davneet S., Laymon, Charles M., Maillard, Pauline, Wilson, James D., Chen, Chang-Le, Crainiceanu, Ciprian M., DeCarli, Charles S., Hwang, Seong Jae, Tudorascu, Dana L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529705/ https://www.ncbi.nlm.nih.gov/pubmed/37595405 http://dx.doi.org/10.1016/j.media.2023.102926 |
Ejemplares similares
-
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
por: Torbati, Mahbaneh Eshaghzadeh, et al.
Publicado: (2021) -
ComBat Harmonization: Empirical Bayes versus fully Bayes approaches
por: Reynolds, Maxwell, et al.
Publicado: (2023) -
Statistical Methods for Processing Neuroimaging Data from Two Different Sites with a Down Syndrome Population Application
por: Minhas, Davneet S., et al.
Publicado: (2020) -
Application of Taxonomic Modeling to Microbiota Data Mining for Detection of Helminth Infection in Global Populations
por: Torbati, Mahbaneh Eshaghzadeh, et al.
Publicado: (2016) -
Characterization of point-spread function specification error on Geometric Transfer Matrix partial volume correction in [(11)C]PiB amyloid imaging
por: Laymon, Charles M., et al.
Publicado: (2021)