Cargando…
An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS
This work was designed to investigate the dynamic changes process of non-volatile organic compounds (n-VOCs) and volatile organic compounds (VOCs) in mulberries during different growth periods using UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. A total of 166 compounds were identified, including...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529768/ https://www.ncbi.nlm.nih.gov/pubmed/37761044 http://dx.doi.org/10.3390/foods12183335 |
Sumario: | This work was designed to investigate the dynamic changes process of non-volatile organic compounds (n-VOCs) and volatile organic compounds (VOCs) in mulberries during different growth periods using UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. A total of 166 compounds were identified, including 68 n-VOCs and 98 VOCs. Furthermore, principal component analysis (PCA), random forest analysis (RFA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to analyze differences in mulberries at different ripening stages. A total of 74 compounds appeared or disappeared at different ripening periods and 24 compounds were presented throughout the growth process. Quantitative analysis and antioxidant experiments revealed that as the mulberries continued to mature, flavonoids and phenolic acids continued to increase, and the best antioxidant activity occurred from stage IV. Conclusively, an effective strategy was established for analyzing the composition change process during different growth periods, which could assist in achieving dynamic change process analysis and quality control. |
---|