Cargando…
Empowering Lower Limb Disorder Identification through PoseNet and Artificial Intelligence
A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders....
Autores principales: | Siddiqui, Hafeez Ur Rehman, Saleem, Adil Ali, Raza, Muhammad Amjad, Villar, Santos Gracia, Lopez, Luis Alonso Dzul, Diez, Isabel de la Torre, Rustam, Furqan, Dudley, Sandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530167/ https://www.ncbi.nlm.nih.gov/pubmed/37761248 http://dx.doi.org/10.3390/diagnostics13182881 |
Ejemplares similares
-
Enhancing Cricket Performance Analysis with Human Pose Estimation and Machine Learning
por: Siddiqui, Hafeez Ur Rehman, et al.
Publicado: (2023) -
INV-Flow2PoseNet: Light-Resistant Rigid Object Pose from Optical Flow of RGB-D Images Using Images, Normals and Vertices
por: Fetzer, Torben, et al.
Publicado: (2022) -
An Approach to Detect Chronic Obstructive Pulmonary Disease Using UWB Radar-Based Temporal and Spectral Features
por: Siddiqui, Hafeez-Ur-Rehman, et al.
Publicado: (2023) -
Non-Invasive Driver Drowsiness Detection System
por: Siddiqui, Hafeez Ur Rehman, et al.
Publicado: (2021) -
Predicting microbe organisms using data of living micro forms of life and hybrid microbes classifier
por: Raza, Ali, et al.
Publicado: (2023)