Cargando…
Influence of Artificial Intelligence-Driven Diagnostic Tools on Treatment Decision-Making in Early Childhood Caries: A Systematic Review of Accuracy and Clinical Outcomes
Early detection and accurate prediction of the risk of early childhood caries (ECC) are essential for effective prevention and management. This systematic review aims to assess the performance and applicability of machine learning algorithms in ECC prediction and detection. A comprehensive search wa...
Autor principal: | Al-Namankany, Abeer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530226/ https://www.ncbi.nlm.nih.gov/pubmed/37754334 http://dx.doi.org/10.3390/dj11090214 |
Ejemplares similares
-
Diagnostic Accuracy of the Artificial Intelligence Methods in Medical Imaging for Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis
por: Zhan, Yuejuan, et al.
Publicado: (2022) -
Cost-Effectiveness of Treatment Decisions for Early Childhood Caries in Infants and Toddlers: A Systematic Review
por: Wolf, Thomas Gerhard, et al.
Publicado: (2023) -
Decision-Making in Artificial Intelligence: Is It Always Correct?
por: Kim, Hun-Sung
Publicado: (2019) -
Artificial intelligence decision-making in mobile health
por: Menictas, Marianne, et al.
Publicado: (2019) -
Accessing Artificial Intelligence for Clinical Decision-Making
por: Giordano, Chris, et al.
Publicado: (2021)