Cargando…

Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties

This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Carvajal-Mena, Nailín, Tabilo-Munizaga, Gipsy, Saldaña, Marleny D. A., Pérez-Won, Mario, Herrera-Lavados, Carolina, Lemus-Mondaca, Roberto, Moreno-Osorio, Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530252/
https://www.ncbi.nlm.nih.gov/pubmed/37754446
http://dx.doi.org/10.3390/gels9090766
_version_ 1785111492025122816
author Carvajal-Mena, Nailín
Tabilo-Munizaga, Gipsy
Saldaña, Marleny D. A.
Pérez-Won, Mario
Herrera-Lavados, Carolina
Lemus-Mondaca, Roberto
Moreno-Osorio, Luis
author_facet Carvajal-Mena, Nailín
Tabilo-Munizaga, Gipsy
Saldaña, Marleny D. A.
Pérez-Won, Mario
Herrera-Lavados, Carolina
Lemus-Mondaca, Roberto
Moreno-Osorio, Luis
author_sort Carvajal-Mena, Nailín
collection PubMed
description This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R(2) = 99.98%) with the experimental conditions of the 3D printing process than the RSM (R(2) = 93.99%). The extrusion speed was the most influential parameter according to both methodologies. The optimal values of the printing parameters for the SGG were 0.70 mm for the nozzle diameter, 0.5 mm for the nozzle height, and 24 mm/s for the extrusion speed. Gel thermal properties showed that the optimal 3D printing conditions affected denaturation temperature and enthalpy, improving digestibility from 46.93% (SGG) to 51.52% (PSGG). The secondary gel structures showed that the β-turn structure was the most resistant to enzymatic hydrolysis, while the intermolecular β-sheet was the most labile. This study validated two optimization methodologies to achieve optimal 3D printing parameters of salmon gelatin gels, with improved physicochemical and digestibility properties for use as transporters to incorporate high value nutrients to the body.
format Online
Article
Text
id pubmed-10530252
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105302522023-09-28 Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties Carvajal-Mena, Nailín Tabilo-Munizaga, Gipsy Saldaña, Marleny D. A. Pérez-Won, Mario Herrera-Lavados, Carolina Lemus-Mondaca, Roberto Moreno-Osorio, Luis Gels Article This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R(2) = 99.98%) with the experimental conditions of the 3D printing process than the RSM (R(2) = 93.99%). The extrusion speed was the most influential parameter according to both methodologies. The optimal values of the printing parameters for the SGG were 0.70 mm for the nozzle diameter, 0.5 mm for the nozzle height, and 24 mm/s for the extrusion speed. Gel thermal properties showed that the optimal 3D printing conditions affected denaturation temperature and enthalpy, improving digestibility from 46.93% (SGG) to 51.52% (PSGG). The secondary gel structures showed that the β-turn structure was the most resistant to enzymatic hydrolysis, while the intermolecular β-sheet was the most labile. This study validated two optimization methodologies to achieve optimal 3D printing parameters of salmon gelatin gels, with improved physicochemical and digestibility properties for use as transporters to incorporate high value nutrients to the body. MDPI 2023-09-20 /pmc/articles/PMC10530252/ /pubmed/37754446 http://dx.doi.org/10.3390/gels9090766 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Carvajal-Mena, Nailín
Tabilo-Munizaga, Gipsy
Saldaña, Marleny D. A.
Pérez-Won, Mario
Herrera-Lavados, Carolina
Lemus-Mondaca, Roberto
Moreno-Osorio, Luis
Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_full Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_fullStr Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_full_unstemmed Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_short Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_sort three-dimensional printing parameter optimization for salmon gelatin gels using artificial neural networks and response surface methodology: influence on physicochemical and digestibility properties
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530252/
https://www.ncbi.nlm.nih.gov/pubmed/37754446
http://dx.doi.org/10.3390/gels9090766
work_keys_str_mv AT carvajalmenanailin threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT tabilomunizagagipsy threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT saldanamarlenyda threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT perezwonmario threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT herreralavadoscarolina threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT lemusmondacaroberto threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT morenoosorioluis threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties