Cargando…
Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was ev...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530252/ https://www.ncbi.nlm.nih.gov/pubmed/37754446 http://dx.doi.org/10.3390/gels9090766 |
_version_ | 1785111492025122816 |
---|---|
author | Carvajal-Mena, Nailín Tabilo-Munizaga, Gipsy Saldaña, Marleny D. A. Pérez-Won, Mario Herrera-Lavados, Carolina Lemus-Mondaca, Roberto Moreno-Osorio, Luis |
author_facet | Carvajal-Mena, Nailín Tabilo-Munizaga, Gipsy Saldaña, Marleny D. A. Pérez-Won, Mario Herrera-Lavados, Carolina Lemus-Mondaca, Roberto Moreno-Osorio, Luis |
author_sort | Carvajal-Mena, Nailín |
collection | PubMed |
description | This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R(2) = 99.98%) with the experimental conditions of the 3D printing process than the RSM (R(2) = 93.99%). The extrusion speed was the most influential parameter according to both methodologies. The optimal values of the printing parameters for the SGG were 0.70 mm for the nozzle diameter, 0.5 mm for the nozzle height, and 24 mm/s for the extrusion speed. Gel thermal properties showed that the optimal 3D printing conditions affected denaturation temperature and enthalpy, improving digestibility from 46.93% (SGG) to 51.52% (PSGG). The secondary gel structures showed that the β-turn structure was the most resistant to enzymatic hydrolysis, while the intermolecular β-sheet was the most labile. This study validated two optimization methodologies to achieve optimal 3D printing parameters of salmon gelatin gels, with improved physicochemical and digestibility properties for use as transporters to incorporate high value nutrients to the body. |
format | Online Article Text |
id | pubmed-10530252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105302522023-09-28 Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties Carvajal-Mena, Nailín Tabilo-Munizaga, Gipsy Saldaña, Marleny D. A. Pérez-Won, Mario Herrera-Lavados, Carolina Lemus-Mondaca, Roberto Moreno-Osorio, Luis Gels Article This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R(2) = 99.98%) with the experimental conditions of the 3D printing process than the RSM (R(2) = 93.99%). The extrusion speed was the most influential parameter according to both methodologies. The optimal values of the printing parameters for the SGG were 0.70 mm for the nozzle diameter, 0.5 mm for the nozzle height, and 24 mm/s for the extrusion speed. Gel thermal properties showed that the optimal 3D printing conditions affected denaturation temperature and enthalpy, improving digestibility from 46.93% (SGG) to 51.52% (PSGG). The secondary gel structures showed that the β-turn structure was the most resistant to enzymatic hydrolysis, while the intermolecular β-sheet was the most labile. This study validated two optimization methodologies to achieve optimal 3D printing parameters of salmon gelatin gels, with improved physicochemical and digestibility properties for use as transporters to incorporate high value nutrients to the body. MDPI 2023-09-20 /pmc/articles/PMC10530252/ /pubmed/37754446 http://dx.doi.org/10.3390/gels9090766 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carvajal-Mena, Nailín Tabilo-Munizaga, Gipsy Saldaña, Marleny D. A. Pérez-Won, Mario Herrera-Lavados, Carolina Lemus-Mondaca, Roberto Moreno-Osorio, Luis Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties |
title | Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties |
title_full | Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties |
title_fullStr | Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties |
title_full_unstemmed | Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties |
title_short | Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties |
title_sort | three-dimensional printing parameter optimization for salmon gelatin gels using artificial neural networks and response surface methodology: influence on physicochemical and digestibility properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530252/ https://www.ncbi.nlm.nih.gov/pubmed/37754446 http://dx.doi.org/10.3390/gels9090766 |
work_keys_str_mv | AT carvajalmenanailin threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties AT tabilomunizagagipsy threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties AT saldanamarlenyda threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties AT perezwonmario threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties AT herreralavadoscarolina threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties AT lemusmondacaroberto threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties AT morenoosorioluis threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties |