Cargando…
GOWDL: gene ontology-driven wide and deep learning model for cell typing of scRNA-seq data
Single-cell RNA-sequencing (scRNA-seq) allows for obtaining genomic and transcriptomic profiles of individual cells. That data make it possible to characterize tissues at the cell level. In this context, one of the main analyses exploiting scRNA-seq data is identifying the cell types within tissue t...
Autores principales: | Fiannaca, Antonino, La Rosa, Massimo, La Paglia, Laura, Gaglio, Salvatore, Urso, Alfonso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530315/ https://www.ncbi.nlm.nih.gov/pubmed/37756593 http://dx.doi.org/10.1093/bib/bbad332 |
Ejemplares similares
-
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
por: Jia, Shangru, et al.
Publicado: (2023) -
SBGN Bricks Ontology as a tool to describe recurring concepts in molecular networks
por: Rougny, Adrien, et al.
Publicado: (2021) -
An evidence-based lexical pattern approach for quality assurance of Gene Ontology relations
por: Abeysinghe, Rashmie, et al.
Publicado: (2022) -
CODA: a combo-Seq data analysis workflow
por: Nazzari, Marta, et al.
Publicado: (2022) -
scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
por: Zhu, Hao, et al.
Publicado: (2023)