Cargando…
The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience
Background: Breast cancer has been categorized into molecular subtypes using immunohistochemical staining (IHC) and fluorescence in situ hybridization (FISH) since the early 2000s. However, recent research suggests that gene expression testing, specifically Prosigna(®) Prediction Analysis of Microar...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530528/ https://www.ncbi.nlm.nih.gov/pubmed/37761848 http://dx.doi.org/10.3390/genes14091708 |
_version_ | 1785111522076262400 |
---|---|
author | Dank, Magdolna Mühl, Dorottya Pölhös, Annamária Csanda, Renata Herold, Magdolna Kovacs, Attila Kristof Madaras, Lilla Kulka, Janina Palhazy, Timea Tokes, Anna-Maria Toth, Monika Ujhelyi, Mihaly Szasz, Attila Marcell Herold, Zoltan |
author_facet | Dank, Magdolna Mühl, Dorottya Pölhös, Annamária Csanda, Renata Herold, Magdolna Kovacs, Attila Kristof Madaras, Lilla Kulka, Janina Palhazy, Timea Tokes, Anna-Maria Toth, Monika Ujhelyi, Mihaly Szasz, Attila Marcell Herold, Zoltan |
author_sort | Dank, Magdolna |
collection | PubMed |
description | Background: Breast cancer has been categorized into molecular subtypes using immunohistochemical staining (IHC) and fluorescence in situ hybridization (FISH) since the early 2000s. However, recent research suggests that gene expression testing, specifically Prosigna(®) Prediction Analysis of Microarray 50 (PAM50), provides more accurate classification methods. In this retrospective study, we compared the results of IHC/FISH and PAM50 testing. We also examined the impact of various PAM50 parameters on overall survival (OS) and progression-free survival (PFS). Results: We analyzed 42 unilateral breast cancer samples, with 18 classified as luminal A, 10 as luminal B, 8 as Human epidermal growth factor receptor 2 (HER2)-positive, and 6 as basal-like using PAM50. Interestingly, 17 out of the 42 samples (40.47%) showed discordant results between histopathological assessment and the PAM50 classifier. While routine IHC/FISH resulted in classification differences for a quarter to a third of samples within each subtype, all basal-like tumors were misclassified. Hormone receptor-positive tumors (hazard rate: 8.7803; p = 0.0085) and patients who had higher 10-year recurrence risk scores (hazard rate: 1.0539; p = 0.0201) had shorter OS and PFS. Conclusions: Our study supports the existing understanding of molecular subtypes in breast cancer and emphasizes the overlap between clinical characteristics and molecular subtyping. These findings underscore the value of gene expression profiling, such as PAM50, in improving treatment decisions for breast cancer patients. |
format | Online Article Text |
id | pubmed-10530528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105305282023-09-28 The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience Dank, Magdolna Mühl, Dorottya Pölhös, Annamária Csanda, Renata Herold, Magdolna Kovacs, Attila Kristof Madaras, Lilla Kulka, Janina Palhazy, Timea Tokes, Anna-Maria Toth, Monika Ujhelyi, Mihaly Szasz, Attila Marcell Herold, Zoltan Genes (Basel) Article Background: Breast cancer has been categorized into molecular subtypes using immunohistochemical staining (IHC) and fluorescence in situ hybridization (FISH) since the early 2000s. However, recent research suggests that gene expression testing, specifically Prosigna(®) Prediction Analysis of Microarray 50 (PAM50), provides more accurate classification methods. In this retrospective study, we compared the results of IHC/FISH and PAM50 testing. We also examined the impact of various PAM50 parameters on overall survival (OS) and progression-free survival (PFS). Results: We analyzed 42 unilateral breast cancer samples, with 18 classified as luminal A, 10 as luminal B, 8 as Human epidermal growth factor receptor 2 (HER2)-positive, and 6 as basal-like using PAM50. Interestingly, 17 out of the 42 samples (40.47%) showed discordant results between histopathological assessment and the PAM50 classifier. While routine IHC/FISH resulted in classification differences for a quarter to a third of samples within each subtype, all basal-like tumors were misclassified. Hormone receptor-positive tumors (hazard rate: 8.7803; p = 0.0085) and patients who had higher 10-year recurrence risk scores (hazard rate: 1.0539; p = 0.0201) had shorter OS and PFS. Conclusions: Our study supports the existing understanding of molecular subtypes in breast cancer and emphasizes the overlap between clinical characteristics and molecular subtyping. These findings underscore the value of gene expression profiling, such as PAM50, in improving treatment decisions for breast cancer patients. MDPI 2023-08-28 /pmc/articles/PMC10530528/ /pubmed/37761848 http://dx.doi.org/10.3390/genes14091708 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dank, Magdolna Mühl, Dorottya Pölhös, Annamária Csanda, Renata Herold, Magdolna Kovacs, Attila Kristof Madaras, Lilla Kulka, Janina Palhazy, Timea Tokes, Anna-Maria Toth, Monika Ujhelyi, Mihaly Szasz, Attila Marcell Herold, Zoltan The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience |
title | The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience |
title_full | The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience |
title_fullStr | The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience |
title_full_unstemmed | The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience |
title_short | The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience |
title_sort | prediction analysis of microarray 50 (pam50) gene expression classifier utilized in indeterminate-risk breast cancer patients in hungary: a consecutive 5-year experience |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530528/ https://www.ncbi.nlm.nih.gov/pubmed/37761848 http://dx.doi.org/10.3390/genes14091708 |
work_keys_str_mv | AT dankmagdolna thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT muhldorottya thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT polhosannamaria thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT csandarenata thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT heroldmagdolna thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT kovacsattilakristof thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT madaraslilla thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT kulkajanina thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT palhazytimea thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT tokesannamaria thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT tothmonika thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT ujhelyimihaly thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT szaszattilamarcell thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT heroldzoltan thepredictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT dankmagdolna predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT muhldorottya predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT polhosannamaria predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT csandarenata predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT heroldmagdolna predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT kovacsattilakristof predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT madaraslilla predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT kulkajanina predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT palhazytimea predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT tokesannamaria predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT tothmonika predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT ujhelyimihaly predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT szaszattilamarcell predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience AT heroldzoltan predictionanalysisofmicroarray50pam50geneexpressionclassifierutilizedinindeterminateriskbreastcancerpatientsinhungaryaconsecutive5yearexperience |