Cargando…
Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells
We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530646/ https://www.ncbi.nlm.nih.gov/pubmed/37762164 http://dx.doi.org/10.3390/ijms241813863 |
_version_ | 1785111536421830656 |
---|---|
author | Kasahara, Yamato Tamamura, Sakura Hiyama, Gen Takagi, Motoki Nakamichi, Kazuya Doi, Yuta Semba, Kentaro Watanabe, Shinya Ishikawa, Kosuke |
author_facet | Kasahara, Yamato Tamamura, Sakura Hiyama, Gen Takagi, Motoki Nakamichi, Kazuya Doi, Yuta Semba, Kentaro Watanabe, Shinya Ishikawa, Kosuke |
author_sort | Kasahara, Yamato |
collection | PubMed |
description | We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia cell line K562, we found several compounds unexpectedly caused reporter responses. These included tyrosine kinase inhibitors such as dasatinib and cerdulatinib, which were seemingly unrelated to the forskolin-reactive pathway. To investigate whether any other clones of forskolin-responsive cells would show the same response, nine additional forskolin-responsive clones, each with a unique integration site, were generated and quantitatively evaluated by luciferase assay. The results showed that each clone represented different response patterns to the reactive compounds. Also, it became clear that each of the reactive compounds could be profiled as a unique pattern by the 10 reporter clones. When other TKIs, mainly bcr-abl inhibitors, were evaluated using a more focused set of five reporter clones, they also showed unique profiling. Among them, dasatinib and bosutinib, and imatinib and bafetinib showed homologous profiling. The tyrosine kinase inhibitors mentioned above are approved as anticancer agents, and the system could be used for similarity evaluation, efficacy prediction, etc., in the development of new anticancer agents. |
format | Online Article Text |
id | pubmed-10530646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105306462023-09-28 Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells Kasahara, Yamato Tamamura, Sakura Hiyama, Gen Takagi, Motoki Nakamichi, Kazuya Doi, Yuta Semba, Kentaro Watanabe, Shinya Ishikawa, Kosuke Int J Mol Sci Article We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia cell line K562, we found several compounds unexpectedly caused reporter responses. These included tyrosine kinase inhibitors such as dasatinib and cerdulatinib, which were seemingly unrelated to the forskolin-reactive pathway. To investigate whether any other clones of forskolin-responsive cells would show the same response, nine additional forskolin-responsive clones, each with a unique integration site, were generated and quantitatively evaluated by luciferase assay. The results showed that each clone represented different response patterns to the reactive compounds. Also, it became clear that each of the reactive compounds could be profiled as a unique pattern by the 10 reporter clones. When other TKIs, mainly bcr-abl inhibitors, were evaluated using a more focused set of five reporter clones, they also showed unique profiling. Among them, dasatinib and bosutinib, and imatinib and bafetinib showed homologous profiling. The tyrosine kinase inhibitors mentioned above are approved as anticancer agents, and the system could be used for similarity evaluation, efficacy prediction, etc., in the development of new anticancer agents. MDPI 2023-09-08 /pmc/articles/PMC10530646/ /pubmed/37762164 http://dx.doi.org/10.3390/ijms241813863 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kasahara, Yamato Tamamura, Sakura Hiyama, Gen Takagi, Motoki Nakamichi, Kazuya Doi, Yuta Semba, Kentaro Watanabe, Shinya Ishikawa, Kosuke Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells |
title | Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells |
title_full | Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells |
title_fullStr | Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells |
title_full_unstemmed | Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells |
title_short | Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells |
title_sort | tyrosine kinase inhibitor profiling using multiple forskolin-responsive reporter cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530646/ https://www.ncbi.nlm.nih.gov/pubmed/37762164 http://dx.doi.org/10.3390/ijms241813863 |
work_keys_str_mv | AT kasaharayamato tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT tamamurasakura tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT hiyamagen tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT takagimotoki tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT nakamichikazuya tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT doiyuta tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT sembakentaro tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT watanabeshinya tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells AT ishikawakosuke tyrosinekinaseinhibitorprofilingusingmultipleforskolinresponsivereportercells |