Cargando…

Diverse Systems for Efficient Sequence Insertion and Replacement in Precise Plant Genome Editing

CRISPR-mediated genome editing has been widely applied in plants to make uncomplicated genomic modifications including gene knockout and base changes. However, the introduction of many genetic variants related to valuable agronomic traits requires complex and precise DNA changes. Different CRISPR sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yingxiao, Qi, Yiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530650/
https://www.ncbi.nlm.nih.gov/pubmed/37849897
http://dx.doi.org/10.34133/2020/8659064
Descripción
Sumario:CRISPR-mediated genome editing has been widely applied in plants to make uncomplicated genomic modifications including gene knockout and base changes. However, the introduction of many genetic variants related to valuable agronomic traits requires complex and precise DNA changes. Different CRISPR systems have been developed to achieve efficient sequence insertion and replacement but with limited success. A recent study has significantly improved NHEJ- and HDR-mediated sequence insertion and replacement using chemically modified donor templates. Together with other newly developed precise editing systems, such as prime editing and CRISPR-associated transposases, these technologies will provide new avenues to further the plant genome editing field.