Cargando…
Impact of Experimental Bias on Compositional Analysis of Microbiome Data
Microbiome data are subject to experimental bias that is caused by DNA extraction and PCR amplification, among other sources, but this important feature is often ignored when developing statistical methods for analyzing microbiome data. McLaren, Willis, and Callahan (2019) proposed a model for how s...
Autores principales: | Hu, Yingtian, Satten, Glen A., Hu, Yi-Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530728/ https://www.ncbi.nlm.nih.gov/pubmed/37761917 http://dx.doi.org/10.3390/genes14091777 |
Ejemplares similares
-
LOCOM: A logistic regression model for testing differential abundance in compositional microbiome data with false discovery rate control
por: Hu, Yingtian, et al.
Publicado: (2022) -
Testing microbiome associations with survival times at both the community and individual taxon levels
por: Hu, Yingtian, et al.
Publicado: (2022) -
Constraining PERMANOVA and LDM to within-set comparisons by projection improves the efficiency of analyses of matched sets of microbiome data
por: Zhu, Zhengyi, et al.
Publicado: (2021) -
What Can We Learn about the Bias of Microbiome Studies from Analyzing Data from Mock Communities?
por: Li, Mo, et al.
Publicado: (2022) -
Integrative analysis of microbial 16S gene and shotgun metagenomic sequencing data improves statistical efficiency
por: Yue, Ye, et al.
Publicado: (2023)