Cargando…

Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma

PURPOSE: We determined whether a large, multianalyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: We defined a biologically relevant subspace of blood analytes on the basis of previous identification in premalign...

Descripción completa

Detalles Bibliográficos
Autores principales: Firpo, Matthew A., Boucher, Kenneth M., Bleicher, Josh, Khanderao, Gayatri D., Rosati, Alessandra, Poruk, Katherine E., Kamal, Sama, Marzullo, Liberato, De Marco, Margot, Falco, Antonia, Genovese, Armando, Adler, Jessica M., De Laurenzi, Vincenzo, Adler, Douglas G., Affolter, Kajsa E., Garrido-Laguna, Ignacio, Scaife, Courtney L., Turco, M. Caterina, Mulvihill, Sean J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530881/
https://www.ncbi.nlm.nih.gov/pubmed/36913644
http://dx.doi.org/10.1200/CCI.22.00160
_version_ 1785111589243846656
author Firpo, Matthew A.
Boucher, Kenneth M.
Bleicher, Josh
Khanderao, Gayatri D.
Rosati, Alessandra
Poruk, Katherine E.
Kamal, Sama
Marzullo, Liberato
De Marco, Margot
Falco, Antonia
Genovese, Armando
Adler, Jessica M.
De Laurenzi, Vincenzo
Adler, Douglas G.
Affolter, Kajsa E.
Garrido-Laguna, Ignacio
Scaife, Courtney L.
Turco, M. Caterina
Mulvihill, Sean J.
author_facet Firpo, Matthew A.
Boucher, Kenneth M.
Bleicher, Josh
Khanderao, Gayatri D.
Rosati, Alessandra
Poruk, Katherine E.
Kamal, Sama
Marzullo, Liberato
De Marco, Margot
Falco, Antonia
Genovese, Armando
Adler, Jessica M.
De Laurenzi, Vincenzo
Adler, Douglas G.
Affolter, Kajsa E.
Garrido-Laguna, Ignacio
Scaife, Courtney L.
Turco, M. Caterina
Mulvihill, Sean J.
author_sort Firpo, Matthew A.
collection PubMed
description PURPOSE: We determined whether a large, multianalyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: We defined a biologically relevant subspace of blood analytes on the basis of previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, and 182 early-stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects on the basis of their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects. RESULTS: A classification model was trained on 669 subjects (358 healthy, 159 benign, and 152 early-stage PDAC). Model evaluation on a hold-out test set of 168 subjects (103 healthy, 35 benign, and 30 early-stage PDAC) yielded an area under the receiver operating characteristic curve (AUC) of 0.920 for classification of PDAC from non-PDAC (benign and healthy controls) and an AUC of 0.944 for PDAC versus healthy controls. The algorithm was then validated in 146 subsequent cases presenting with pancreatic disease (73 benign pancreatic disease and 73 early- and late-stage PDAC cases) and 40 healthy control subjects. The validation set yielded an AUC of 0.919 for classification of PDAC from non-PDAC and an AUC of 0.925 for PDAC versus healthy controls. CONCLUSION: Individually weak serum biomarkers can be combined into a strong classification algorithm to develop a blood test to identify patients who may benefit from further testing.
format Online
Article
Text
id pubmed-10530881
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Wolters Kluwer Health
record_format MEDLINE/PubMed
spelling pubmed-105308812023-09-28 Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma Firpo, Matthew A. Boucher, Kenneth M. Bleicher, Josh Khanderao, Gayatri D. Rosati, Alessandra Poruk, Katherine E. Kamal, Sama Marzullo, Liberato De Marco, Margot Falco, Antonia Genovese, Armando Adler, Jessica M. De Laurenzi, Vincenzo Adler, Douglas G. Affolter, Kajsa E. Garrido-Laguna, Ignacio Scaife, Courtney L. Turco, M. Caterina Mulvihill, Sean J. JCO Clin Cancer Inform ORIGINAL REPORTS PURPOSE: We determined whether a large, multianalyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: We defined a biologically relevant subspace of blood analytes on the basis of previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, and 182 early-stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects on the basis of their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects. RESULTS: A classification model was trained on 669 subjects (358 healthy, 159 benign, and 152 early-stage PDAC). Model evaluation on a hold-out test set of 168 subjects (103 healthy, 35 benign, and 30 early-stage PDAC) yielded an area under the receiver operating characteristic curve (AUC) of 0.920 for classification of PDAC from non-PDAC (benign and healthy controls) and an AUC of 0.944 for PDAC versus healthy controls. The algorithm was then validated in 146 subsequent cases presenting with pancreatic disease (73 benign pancreatic disease and 73 early- and late-stage PDAC cases) and 40 healthy control subjects. The validation set yielded an AUC of 0.919 for classification of PDAC from non-PDAC and an AUC of 0.925 for PDAC versus healthy controls. CONCLUSION: Individually weak serum biomarkers can be combined into a strong classification algorithm to develop a blood test to identify patients who may benefit from further testing. Wolters Kluwer Health 2023-03-13 /pmc/articles/PMC10530881/ /pubmed/36913644 http://dx.doi.org/10.1200/CCI.22.00160 Text en © 2023 by American Society of Clinical Oncology https://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution Non-Commercial No Derivatives 4.0 License: https://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle ORIGINAL REPORTS
Firpo, Matthew A.
Boucher, Kenneth M.
Bleicher, Josh
Khanderao, Gayatri D.
Rosati, Alessandra
Poruk, Katherine E.
Kamal, Sama
Marzullo, Liberato
De Marco, Margot
Falco, Antonia
Genovese, Armando
Adler, Jessica M.
De Laurenzi, Vincenzo
Adler, Douglas G.
Affolter, Kajsa E.
Garrido-Laguna, Ignacio
Scaife, Courtney L.
Turco, M. Caterina
Mulvihill, Sean J.
Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma
title Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma
title_full Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma
title_fullStr Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma
title_full_unstemmed Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma
title_short Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma
title_sort multianalyte serum biomarker panel for early detection of pancreatic adenocarcinoma
topic ORIGINAL REPORTS
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530881/
https://www.ncbi.nlm.nih.gov/pubmed/36913644
http://dx.doi.org/10.1200/CCI.22.00160
work_keys_str_mv AT firpomatthewa multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT boucherkennethm multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT bleicherjosh multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT khanderaogayatrid multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT rosatialessandra multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT porukkatherinee multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT kamalsama multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT marzulloliberato multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT demarcomargot multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT falcoantonia multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT genovesearmando multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT adlerjessicam multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT delaurenzivincenzo multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT adlerdouglasg multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT affolterkajsae multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT garridolagunaignacio multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT scaifecourtneyl multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT turcomcaterina multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma
AT mulvihillseanj multianalyteserumbiomarkerpanelforearlydetectionofpancreaticadenocarcinoma