Cargando…
Identification of Breast Cancer Metastasis Markers from Gene Expression Profiles Using Machine Learning Approaches
Cancer metastasis accounts for approximately 90% of cancer deaths, and elucidating markers in metastasis is the first step in its prevention. To characterize metastasis marker genes (MGs) of breast cancer, XGBoost models that classify metastasis status were trained with gene expression profiles from...
Autores principales: | Jung, Jinmyung, Yoo, Sunyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530902/ https://www.ncbi.nlm.nih.gov/pubmed/37761960 http://dx.doi.org/10.3390/genes14091820 |
Ejemplares similares
-
Precise Characterization of Genetic Interactions in Cancer via Molecular Network Refining Processes
por: Jung, Jinmyung, et al.
Publicado: (2021) -
Analysis of the Effects of Nutrient Intake and Dietary Habits on Depression in Korean Adults
por: Yun, Hyeonseo, et al.
Publicado: (2021) -
Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles
por: Park, Chihyun, et al.
Publicado: (2018) -
Gene Expression Profiling of Breast Cancer Brain Metastasis
por: Lee, Ji Yun, et al.
Publicado: (2016) -
A Machine Learning Approach for Tracing Tumor Original Sites With Gene Expression Profiles
por: Liang, Xin, et al.
Publicado: (2020)