Cargando…
Expression Analysis Reveals Differentially Expressed Genes in BPH and WBPH Associated with Resistance in Rice RILs Derived from a Cross between RP2068 and TN1
BPH (brown planthopper) and WBPH (white backed planthopper) are significant rice pests that often co-occur as sympatric species and cause substantial yield loss. Despite their genetic similarities, different host-resistance genes confer resistance against these two hoppers. The defense mechanisms in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531025/ https://www.ncbi.nlm.nih.gov/pubmed/37762286 http://dx.doi.org/10.3390/ijms241813982 |
Sumario: | BPH (brown planthopper) and WBPH (white backed planthopper) are significant rice pests that often co-occur as sympatric species and cause substantial yield loss. Despite their genetic similarities, different host-resistance genes confer resistance against these two hoppers. The defense mechanisms in rice against these pests are complex, and the molecular processes regulating their responses remain largely unknown. This study used specific recombinant inbred lines (RILs) derived from a cross between rice varieties RP2068-18-3-5 (BPH- and WBPH-resistant) and TN1 (BPH- and WBPH-susceptible) to investigate the mechanisms of interaction between these planthoppers and their rice hosts. WBPH and BPH were allowed to feed on specific RILs, and RNA-Seq was carried out on WBPH insects. Transcriptome profiling and qRT-PCR results revealed differential expression of genes involved in detoxification, digestion, transportation, cuticle formation, splicing, and RNA processing. A higher expression of sugar transporters was observed in both hoppers feeding on rice with resistance against either hopper. This is the first comparative analysis of gene expressions in these insects fed on genetically similar hosts but with differential resistance to BPH and WBPH. These results complement our earlier findings on the differential gene expression of the same RILs (BPH- or WBPH-infested) utilized in this study. Moreover, identifying insect genes and pathways responsible for countering host defense would augment our understanding of BPH and WBPH interaction with their rice hosts and enable us to develop lasting strategies to control these significant pests. |
---|