Cargando…

Genome-Wide Identification and Expression Analysis of Respiratory Burst Oxidase Homolog (RBOH) Gene Family in Eggplant (Solanum melongena L.) under Abiotic and Biotic Stress

Respiratory burst oxidase homologs (RBOHs) are important proteins that catalyze the production of reactive oxygen species (ROS), which play important roles in growth and stress response. For a comprehensive analysis of SmRBOH genes, we conducted genome-wide identification of the SmRBOH gene family i...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Lihui, Jiang, Zheng, Zhou, Yadong, Shen, Lei, He, Jie, Xia, Xin, Zhang, Longhao, Yang, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531080/
https://www.ncbi.nlm.nih.gov/pubmed/37761805
http://dx.doi.org/10.3390/genes14091665
Descripción
Sumario:Respiratory burst oxidase homologs (RBOHs) are important proteins that catalyze the production of reactive oxygen species (ROS), which play important roles in growth and stress response. For a comprehensive analysis of SmRBOH genes, we conducted genome-wide identification of the SmRBOH gene family in eggplant (Solanum melongena L.) and analyzed the expression of SmRBOHs under abiotic (salt, high-temperature, and low-temperature) and biotic stress (Verticillium dahliae inoculation) by quantitative real-time PCR (qRT-PCR). The result showed that a total of eight SmRBOH members were identified from the genome database of eggplant, and they were relatively evenly distributed across seven chromosomes. The analysis of Motif and the conserved domain showed that SmRBOHs have high similarity in protein sequences and functions. Based on phylogenetics, SmRBOHs were classified into three distinct clades. Furthermore, the promoter regions of SmRBOHs were found to contain different cis-elements. Additionally, the results of the qRT-PCR demonstrated differential expression patterns of SmRBOHs in different tissues (the roots, stems, and leaves) and stress conditions. SmRBOHB, SmRBOHD, SmRBOHH1, and SmRBOHH2 showed significant upregulation (>20-fold) under at least one stress condition. Subcellular localization analysis of the above four members further confirmed that they localized on the plasma membrane. This study provides a theoretical foundation for understanding the functions of SmRBOHs in eggplant.