Cargando…
Using artificial intelligence to learn optimal regimen plan for Alzheimer’s disease
BACKGROUND: Alzheimer’s disease (AD) is a progressive neurological disorder with no specific curative medications. Sophisticated clinical skills are crucial to optimize treatment regimens given the multiple coexisting comorbidities in the patient population. OBJECTIVE: Here, we propose a study to le...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531148/ https://www.ncbi.nlm.nih.gov/pubmed/37463858 http://dx.doi.org/10.1093/jamia/ocad135 |
Sumario: | BACKGROUND: Alzheimer’s disease (AD) is a progressive neurological disorder with no specific curative medications. Sophisticated clinical skills are crucial to optimize treatment regimens given the multiple coexisting comorbidities in the patient population. OBJECTIVE: Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians’ decisions for AD patients based on the longitude data from electronic health records. METHODS: In this study, we selected 1736 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We focused on the two most frequent concomitant diseases—depression, and hypertension, thus creating 5 data cohorts (ie, Whole Data, AD, AD-Hypertension, AD-Depression, and AD-Depression-Hypertension). We modeled the treatment learning into an RL problem by defining states, actions, and rewards. We built a regression model and decision tree to generate multiple states, used six combinations of medications (ie, cholinesterase inhibitors, memantine, memantine-cholinesterase inhibitors, hypertension drugs, supplements, or no drugs) as actions, and Mini-Mental State Exam (MMSE) scores as rewards. RESULTS: Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician’s treatment regimen. Optimal policies (ie, policy iteration and Q-learning) had lower rewards than the clinician’s policy (mean −3.03 and −2.93 vs. −2.93, respectively) for smaller datasets but had higher rewards for larger datasets (mean −4.68 and −2.82 vs. −4.57, respectively). CONCLUSIONS: Our results highlight the potential of using RL to generate the optimal treatment based on the patients’ longitude records. Our work can lead the path towards developing RL-based decision support systems that could help manage AD with comorbidities. |
---|