Cargando…
Revisiting Assessment of Computational Methods for Hi-C Data Analysis
The performances of algorithms for Hi-C data preprocessing, the identification of topologically associating domains, and the detection of chromatin interactions and promoter–enhancer interactions have been mostly evaluated using semi-quantitative or synthetic data approaches, without utilizing the m...
Autores principales: | Yang, Jing, Zhu, Xingxing, Wang, Rui, Li, Mingzhou, Tang, Qianzi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531246/ https://www.ncbi.nlm.nih.gov/pubmed/37762117 http://dx.doi.org/10.3390/ijms241813814 |
Ejemplares similares
-
Comparison of computational methods for Hi-C data analysis
por: Forcato, Mattia, et al.
Publicado: (2017) -
Pacific Biosciences assembly with Hi-C mapping generates an improved, chromosome-level goose genome
por: Li, Yan, et al.
Publicado: (2020) -
HiNT: a computational method for detecting copy number variations and translocations from Hi-C data
por: Wang, Su, et al.
Publicado: (2020) -
Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data
por: Hansen, Peter, et al.
Publicado: (2019) -
scHiCTools: A computational toolbox for analyzing single-cell Hi-C data
por: Li, Xinjun, et al.
Publicado: (2021)