Cargando…
GMM-Based Expanded Feature Space as a Way to Extract Useful Information for Rare Cell Subtypes Identification in Single-Cell Mass Cytometry
Cell subtype identification from mass cytometry data presents a persisting challenge, particularly when dealing with millions of cells. Current solutions are consistently under development, however, their accuracy and sensitivity remain limited, particularly in rare cell-type detection due to freque...
Autores principales: | Suwalska, Aleksandra, Polanska, Joanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531342/ https://www.ncbi.nlm.nih.gov/pubmed/37762336 http://dx.doi.org/10.3390/ijms241814033 |
Ejemplares similares
-
PhenoGMM: Gaussian Mixture Modeling of Cytometry Data Quantifies Changes in Microbial Community Structure
por: Rubbens, Peter, et al.
Publicado: (2021) -
Portfolio Efficiency Tests with Conditioning Information—Comparing GMM and GEL Estimators
por: Vigo-Pereira, Caio, et al.
Publicado: (2022) -
Quantifying Spatial Heterogeneity of Tumor-Infiltrating Lymphocytes to Predict Survival of Individual Cancer Patients
por: Suwalska, Aleksandra, et al.
Publicado: (2022) -
Multiple Sclerosis Lesion Detection Using Constrained GMM and Curve Evolution
por: Freifeld, Oren, et al.
Publicado: (2009) -
New transformed features generated by deep bottleneck extractor and a GMM–UBM classifier for speaker age and gender classification
por: Mallouh, Arafat Abu, et al.
Publicado: (2017)