Cargando…
A Robust Drug–Target Interaction Prediction Framework with Capsule Network and Transfer Learning
Drug–target interactions (DTIs) are considered a crucial component of drug design and drug discovery. To date, many computational methods were developed for drug–target interactions, but they are insufficiently informative for accurately predicting DTIs due to the lack of experimentally verified neg...
Autores principales: | Huang, Yixian, Huang, Hsi-Yuan, Chen, Yigang, Lin, Yang-Chi-Dung, Yao, Lantian, Lin, Tianxiu, Leng, Junlin, Chang, Yuan, Zhang, Yuntian, Zhu, Zihao, Ma, Kun, Cheng, Yeong-Nan, Lee, Tzong-Yi, Huang, Hsien-Da |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531393/ https://www.ncbi.nlm.nih.gov/pubmed/37762364 http://dx.doi.org/10.3390/ijms241814061 |
Ejemplares similares
-
Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation
por: Yao, Lantian, et al.
Publicado: (2023) -
Quantitative model for genome-wide cyclic AMP receptor protein binding site identification and characteristic analysis
por: Chen, Yigang, et al.
Publicado: (2023) -
miRTarBase update 2022: an informative resource for experimentally validated miRNA–target interactions
por: Huang, Hsi-Yuan, et al.
Publicado: (2021) -
CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers
por: Chen, Yigang, et al.
Publicado: (2021) -
KinasePhos 3.0: Redesign and Expansion of the Prediction on Kinase-specific Phosphorylation Sites
por: Ma, Renfei, et al.
Publicado: (2023)