Cargando…

Exploring Acute Pancreatitis Clinical Pathways Using a Novel Process Mining Method

Mining process models of medical behavior from electronic medical records is an effective way to optimize clinical pathways. However, clinical medical behavior is an extremely complex field with high nonlinearity and variability, and thus we need to adopt a more effective method. In this study, we d...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xue, Huang, Wei, Zhao, Weiling, Zhou, Xiaobo, Shi, Na, Xia, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531471/
https://www.ncbi.nlm.nih.gov/pubmed/37761726
http://dx.doi.org/10.3390/healthcare11182529
Descripción
Sumario:Mining process models of medical behavior from electronic medical records is an effective way to optimize clinical pathways. However, clinical medical behavior is an extremely complex field with high nonlinearity and variability, and thus we need to adopt a more effective method. In this study, we developed a fuzzy process mining method for complex clinical pathways. Firstly, we designed a multi-level expert classification system with fuzzy values to preserve finer details. Secondly, we categorized medical events into long-term and temporary events for more specific data processing. Subsequently, we utilized electronic medical record (EMR) data of acute pancreatitis spanning 9 years, collected from a large general hospital in China, to evaluate the effectiveness of our method. The results demonstrated that our modeling process was simple and understandable, allowing for a more comprehensive representation of medical intricacies. Moreover, our method exhibited high patient coverage (>0.94) and discrimination (>0.838). These findings were corroborated by clinicians, affirming the accuracy and effectiveness of our approach.