Cargando…
Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives
Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K...
Autores principales: | Fjodorova, Natalja, Novič, Marjana, Venko, Katja, Rasulev, Bakhtiyor, Türker Saçan, Melek, Tugcu, Gulcin, Sağ Erdem, Safiye, Toropova, Alla P., Toropov, Andrey A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531479/ https://www.ncbi.nlm.nih.gov/pubmed/37762462 http://dx.doi.org/10.3390/ijms241814160 |
Ejemplares similares
-
How fullerene derivatives (FDs) act on therapeutically important targets associated with diabetic diseases
por: Fjodorova, Natalja, et al.
Publicado: (2022) -
A Comprehensive Cheminformatics Analysis of Structural Features Affecting the Binding Activity of Fullerene Derivatives
por: Fjodorova, Natalja, et al.
Publicado: (2020) -
Integration of QSAR and SAR methods for the mechanistic interpretation of predictive models for carcinogenicity
por: Fjodorova, Natalja, et al.
Publicado: (2012) -
In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES
por: Toropova, Alla P., et al.
Publicado: (2023) -
An In Silico Approach for Assessment of the Membrane Transporter Activities of Phenols: A Case Study Based on Computational Models of Transport Activity for the Transporter Bilitranslocase
por: Venko, Katja, et al.
Publicado: (2019)