Cargando…
AMMVF-DTI: A Novel Model Predicting Drug–Target Interactions Based on Attention Mechanism and Multi-View Fusion
Accurate identification of potential drug–target interactions (DTIs) is a crucial task in drug development and repositioning. Despite the remarkable progress achieved in recent years, improving the performance of DTI prediction still presents significant challenges. In this study, we propose a novel...
Autores principales: | Wang, Lu, Zhou, Yifeng, Chen, Qu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531525/ https://www.ncbi.nlm.nih.gov/pubmed/37762445 http://dx.doi.org/10.3390/ijms241814142 |
Ejemplares similares
-
Multi-TransDTI: Transformer for Drug–Target Interaction Prediction Based on Simple Universal Dictionaries with Multi-View Strategy
por: Wang, Gan, et al.
Publicado: (2022) -
MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug–target interaction
por: Qian, Ying, et al.
Publicado: (2023) -
Multi-view feature representation and fusion for drug-drug interactions prediction
por: Wang, Jing, et al.
Publicado: (2023) -
FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction
por: Rayhan, Farshid, et al.
Publicado: (2020) -
AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification
por: Yazdani-Jahromi, Mehdi, et al.
Publicado: (2022)