Cargando…
FLII Modulates the Myogenic Differentiation of Progenitor Cells via Actin Remodeling-Mediated YAP1 Regulation
The dynamic rearrangement of the actin cytoskeleton plays an essential role in myogenesis, which is regulated by diverse mechanisms, such as mechanotransduction, modulation of the Hippo signaling pathway, control of cell proliferation, and the influence of morphological changes. Despite the recogniz...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531566/ https://www.ncbi.nlm.nih.gov/pubmed/37762638 http://dx.doi.org/10.3390/ijms241814335 |
Sumario: | The dynamic rearrangement of the actin cytoskeleton plays an essential role in myogenesis, which is regulated by diverse mechanisms, such as mechanotransduction, modulation of the Hippo signaling pathway, control of cell proliferation, and the influence of morphological changes. Despite the recognized importance of actin-binding protein Flightless-1 (FLII) during actin remodeling, the role played by FLII in the differentiation of myogenic progenitor cells has not been explored. Here, we investigated the roles of FLII in the proliferation and differentiation of myoblasts. FLII was found to be enriched in C2C12 myoblasts, and its expression was stable during the early stages of differentiation but down-regulated in fully differentiated myotubes. Knockdown of FLII in C2C12 myoblasts resulted in filamentous actin (F-actin) accumulation and inhibited Yes-associated protein 1 (YAP1) phosphorylation, which triggers its nuclear translocation from the cytoplasm. Consequently, the expressions of YAP1 target genes, including PCNA, CCNB1, and CCND1, were induced, and the cell cycle and proliferation of myoblasts were promoted. Moreover, FLII knockdown significantly inhibited the expression of myogenic regulatory factors, i.e., MyoD and MyoG, thereby impairing myoblast differentiation, fusion, and myotube formation. Thus, our findings demonstrate that FLII is crucial for the differentiation of myoblasts via modulation of the F-actin/YAP1 axis and suggest that FLII is a putative novel therapeutic target for muscle wasting. |
---|