Cargando…
Targeting Collagen Pathways as an HFpEF Therapeutic Strategy
Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. The prevalence is expected to increase in the coming years, resulting in heart failure with reduced ejection fraction (HFrEF). This condition poses a burden to the global health care system as th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531642/ https://www.ncbi.nlm.nih.gov/pubmed/37762803 http://dx.doi.org/10.3390/jcm12185862 |
Sumario: | Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. The prevalence is expected to increase in the coming years, resulting in heart failure with reduced ejection fraction (HFrEF). This condition poses a burden to the global health care system as the number of patients affected by this condition is constantly increasing due to a rising average lifespan. The absence of validated drugs effective in reducing hospitalization rates and mortality may reflect the impossibility of applying a one size fits all approach as in HFrEF, heading for a personalized approach. Available evidence demonstrated the link between collagen quantity and quality alterations, and cardiac remodeling. In the context of fibrosis, collagen cross-linking is strictly involved, displaying two types of mechanisms: enzymatic and non-enzymatic. In the murine model, enzymatic inhibition of fibrosis-inducing protease-activated receptor-1 (PAR1) and transforming growth factor (TGF)-β signaling appeared to reduce cardiac fibrosis. On the other hand, in the case of non-enzymatic cross-linking, sodium glucose co-transporter type 2 inhibitors (SGLT2is), appeared to counteract the deposition of advanced glycation end-products (AGEs), which in turn contributed to ventricular remodeling. In this review, we address the mechanisms associated with collagen alterations to identify potential targets of cardiac fibrosis in HFpEF patients. |
---|