Cargando…

Characterization of Biogenic PbS Quantum Dots

Heavy metals in a polluted environment are toxic to life. However, some microorganisms can remove or immobilize heavy metals through biomineralization. These bacteria also form minerals with compositions similar to those of semiconductors. Here, this bioprocess was used to fabricate semiconductors w...

Descripción completa

Detalles Bibliográficos
Autores principales: Okamura, Yoshiko, Shimizu, Ryo, Tominaga, Yoriko, Maki, Sachiko, Aki, Tsunehiro, Matsumura, Yukihiko, Nakashimada, Yutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531774/
https://www.ncbi.nlm.nih.gov/pubmed/37762453
http://dx.doi.org/10.3390/ijms241814149
Descripción
Sumario:Heavy metals in a polluted environment are toxic to life. However, some microorganisms can remove or immobilize heavy metals through biomineralization. These bacteria also form minerals with compositions similar to those of semiconductors. Here, this bioprocess was used to fabricate semiconductors with low energy consumption and cost. Bacteria that form lead sulfide (PbS) nanoparticles were screened, and the crystallinity and semiconductor properties of the resulting nanoparticles were characterized. Bacterial consortia that formed PbS nanoparticles were obtained. Extracellular particle size ranged from 3.9 to 5.5 nm, and lattice fringes were observed. The lattice fringes and electron diffraction spectra corresponded to crystalline PbS. The X-ray diffraction (XRD) patterns of bacterial PbS exhibited clear diffraction peaks. The experimental and theoretical data of the diffraction angles on each crystal plane of polycrystalline PbS were in good agreement. Synchrotron XRD measurements showed no crystalline impurity-derived peaks. Thus, bacterial biomineralization can form ultrafine crystalline PbS nanoparticles. Optical absorption and current–voltage measurements of PbS were obtained to characterize the semiconductor properties; the results showed semiconductor quantum dot behavior. Moreover, the current increased under light irradiation when PbS nanoparticles were used. These results suggest that biogenic PbS has band gaps and exhibits the general fundamental characteristics of a semiconductor.